zshmodules man page on Kali

Man page or keyword search:  
man Server   9211 pages
apropos Keyword Search (all sections)
Output format
Kali logo
[printable version]

ZSHMODULES(1)							 ZSHMODULES(1)

NAME
       zshmodules - zsh loadable modules

DESCRIPTION
       Some  optional  parts  of zsh are in modules, separate from the core of
       the shell.  Each of these modules may be linked	in  to	the  shell  at
       build  time, or can be dynamically linked while the shell is running if
       the installation supports this feature.	Modules are linked at  runtime
       with the zmodload command, see zshbuiltins(1).

       The modules that are bundled with the zsh distribution are:

       zsh/attr
	      Builtins for manipulating extended attributes (xattr).

       zsh/cap
	      Builtins	for manipulating POSIX.1e (POSIX.6) capability (privi‐
	      lege) sets.

       zsh/clone
	      A builtin that can clone a running shell onto another terminal.

       zsh/compctl
	      The compctl builtin for controlling completion.

       zsh/complete
	      The basic completion code.

       zsh/complist
	      Completion listing extensions.

       zsh/computil
	      A module with utility builtins needed  for  the  shell  function
	      based completion system.

       zsh/curses
	      curses windowing commands

       zsh/datetime
	      Some date/time commands and parameters.

       zsh/db/gdbm
	      Builtins	for managing associative array parameters tied to GDBM
	      databases.

       zsh/deltochar
	      A ZLE function duplicating EMACS' zap-to-char.

       zsh/example
	      An example of how to write a module.

       zsh/files
	      Some basic file manipulation commands as builtins.

       zsh/langinfo
	      Interface to locale information.

       zsh/mapfile
	      Access to external files via a special associative array.

       zsh/mathfunc
	      Standard scientific functions for use  in	 mathematical  evalua‐
	      tions.

       zsh/newuser
	      Arrange for files for new users to be installed.

       zsh/parameter
	      Access to internal hash tables via special associative arrays.

       zsh/pcre
	      Interface to the PCRE library.

       zsh/param/private
	      Builtins for managing private-scoped parameters in function con‐
	      text.

       zsh/regex
	      Interface to the POSIX regex library.

       zsh/sched
	      A builtin that provides a timed execution	 facility  within  the
	      shell.

       zsh/net/socket
	      Manipulation of Unix domain sockets

       zsh/stat
	      A builtin command interface to the stat system call.

       zsh/system
	      A builtin interface to various low-level system features.

       zsh/net/tcp
	      Manipulation of TCP sockets

       zsh/termcap
	      Interface to the termcap database.

       zsh/terminfo
	      Interface to the terminfo database.

       zsh/zftp
	      A builtin FTP client.

       zsh/zle
	      The Zsh Line Editor, including the bindkey and vared builtins.

       zsh/zleparameter
	      Access to internals of the Zsh Line Editor via parameters.

       zsh/zprof
	      A module allowing profiling for shell functions.

       zsh/zpty
	      A builtin for starting a command in a pseudo-terminal.

       zsh/zselect
	      Block and return when file descriptors are ready.

       zsh/zutil
	      Some utility builtins, e.g. the one for supporting configuration
	      via styles.

THE ZSH/ATTR MODULE
       The zsh/attr module is used for manipulating extended attributes.   The
       -h  option  causes all commands to operate on symbolic links instead of
       their targets.  The builtins in this module are:

       zgetattr [ -h ] filename attribute [ parameter ]
	      Get the extended attribute attribute from	 the  specified	 file‐
	      name. If the optional argument parameter is given, the attribute
	      is set on that parameter instead of being printed to stdout.

       zsetattr [ -h ] filename attribute value
	      Set the extended attribute attribute on the  specified  filename
	      to value.

       zdelattr [ -h ] filename attribute
	      Remove the extended attribute attribute from the specified file‐
	      name.

       zlistattr [ -h ] filename [ parameter ]
	      List the extended attributes  currently  set  on	the  specified
	      filename.	 If the optional argument parameter is given, the list
	      of attributes is set on that parameter instead of being  printed
	      to stdout.

       zgetattr	 and  zlistattr allocate memory dynamically.  If the attribute
       or list of attributes grows between the allocation and the call to  get
       them,  they return 2.  On all other errors, 1 is returned.  This allows
       the calling function to check for this case and retry.

THE ZSH/CAP MODULE
       The zsh/cap module is used for manipulating POSIX.1e (POSIX.6) capabil‐
       ity sets.  If the operating system does not support this interface, the
       builtins defined by this module will do nothing.	 The builtins in  this
       module are:

       cap [ capabilities ]
	      Change  the  shell's  process  capability	 sets to the specified
	      capabilities, otherwise display the  shell's  current  capabili‐
	      ties.

       getcap filename ...
	      This is a built-in implementation of the POSIX standard utility.
	      It displays the capability sets on each specified filename.

       setcap capabilities filename ...
	      This is a built-in implementation of the POSIX standard utility.
	      It  sets	the  capability sets on each specified filename to the
	      specified capabilities.

THE ZSH/CLONE MODULE
       The zsh/clone module makes available one builtin command:

       clone tty
	      Creates a forked instance of the current shell, attached to  the
	      specified	 tty.  In the new shell, the PID, PPID and TTY special
	      parameters are changed appropriately.  $! is set to zero in  the
	      new shell, and to the new shell's PID in the original shell.

	      The  return status of the builtin is zero in both shells if suc‐
	      cessful, and non-zero on error.

	      The target of clone should be an unused  terminal,  such	as  an
	      unused virtual console or a virtual terminal created by

		     xterm -e sh -c 'trap : INT QUIT TSTP; tty;
			     while :; do sleep 100000000; done'

	      Some  words  of  explanation are warranted about this long xterm
	      command line: when doing clone on a pseudo-terminal, some	 other
	      session  ("session"  meant  as  a unix session group, or SID) is
	      already owning the terminal. Hence the cloned zsh cannot acquire
	      the pseudo-terminal as a controlling tty. That means two things:

	      ·	     the    job	   control    signals	 will	 go   to   the
		     sh-started-by-xterm process group (that's why we  disable
		     INT  QUIT	and  TSTP  with trap; otherwise the while loop
		     could get suspended or killed)

	      ·	     the cloned shell will have job control disabled, and  the
		     job  control  keys	 (control-C,  control-\ and control-Z)
		     will not work.

	      This does not apply when cloning to an unused vc.

	      Cloning to a used (and unprepared) terminal will result  in  two
	      processes	 reading  simultaneously  from the same terminal, with
	      input bytes going randomly to either process.

	      clone is mostly useful  as  a  shell  built-in  replacement  for
	      openvt.

THE ZSH/COMPCTL MODULE
       The  zsh/compctl	 module makes available two builtin commands. compctl,
       is the old, deprecated way to control completions for ZLE.  See zshcom‐
       pctl(1).	   The	 other	builtin	 command,  compcall  can  be  used  in
       user-defined completion widgets, see zshcompwid(1).

THE ZSH/COMPLETE MODULE
       The zsh/complete module makes available several builtin commands	 which
       can be used in user-defined completion widgets, see zshcompwid(1).

THE ZSH/COMPLIST MODULE
       The zsh/complist module offers three extensions to completion listings:
       the ability to highlight matches in such a list, the ability to	scroll
       through long lists and a different style of menu completion.

   Colored completion listings
       Whenever one of the parameters ZLS_COLORS or ZLS_COLOURS is set and the
       zsh/complist module is loaded or	 linked	 into  the  shell,  completion
       lists will be colored.  Note, however, that complist will not automati‐
       cally be loaded if it is not linked in:	on systems with dynamic	 load‐
       ing, `zmodload zsh/complist' is required.

       The  parameters	ZLS_COLORS  and	 ZLS_COLOURS  describe how matches are
       highlighted.  To turn on highlighting an empty value suffices, in which
       case  all  the  default values given below will be used.	 The format of
       the value of these parameters is the same as used by the GNU version of
       the  ls	command:  a colon-separated list of specifications of the form
       `name=value'.  The name may be one of the following  strings,  most  of
       which specify file types for which the value will be used.  The strings
       and their default values are:

       no 0   for normal text (i.e. when displaying  something	other  than  a
	      matched file)

       fi 0   for regular files

       di 32  for directories

       ln 36  for  symbolic links.  If this has the special value target, sym‐
	      bolic links are dereferenced and the target file used to	deter‐
	      mine the display format.

       pi 31  for named pipes (FIFOs)

       so 33  for sockets

       bd 44;37
	      for block devices

       cd 44;37
	      for character devices

       or none
	      for  a symlink to nonexistent file (default is the value defined
	      for ln)

       mi none
	      for a non-existent file (default is the value defined  for  fi);
	      this code is currently not used

       su 37;41
	      for files with setuid bit set

       sg 30;43
	      for files with setgid bit set

       tw 30;42
	      for world writable directories with sticky bit set

       ow 34;43
	      for world writable directories without sticky bit set

       sa none
	      for  files  with an associated suffix alias; this is only tested
	      after specific suffixes, as described below

       st 37;44
	      for directories with sticky bit set but not world writable

       ex 35  for executable files

       lc \e[ for the left code (see below)

       rc m   for the right code

       tc 0   for the character indicating the file type  printed after	 file‐
	      names if the LIST_TYPES option is set

       sp 0   for the spaces printed after matches to align the next column

       ec none
	      for the end code

       Apart  from  these strings, the name may also be an asterisk (`*') fol‐
       lowed by any string. The value given for such a string will be used for
       all  files  whose  name	ends with the string.  The name may also be an
       equals sign (`=') followed by a pattern; the EXTENDED_GLOB option  will
       be  turned  on for evaluation of the pattern.  The value given for this
       pattern will be used for all matches (not just filenames) whose display
       string  are  matched by the pattern.  Definitions for the form with the
       leading equal sign take precedence over the  values  defined  for  file
       types,  which  in  turn	take precedence over the form with the leading
       asterisk (file extensions).

       The leading-equals form also allows different parts  of	the  displayed
       strings	to  be	colored differently.  For this, the pattern has to use
       the `(#b)' globbing flag and pairs of parentheses surrounding the parts
       of  the	strings	 that are to be colored differently.  In this case the
       value may consist of more than one color code separated by equal signs.
       The first code will be used for all parts for which no explicit code is
       specified and the following codes will be used for the parts matched by
       the  sub-patterns  in  parentheses.   For  example,  the	 specification
       `=(#b)(?)*(?)=0=3=7' will be used for all matches which	are  at	 least
       two  characters long and will use the code `3' for the first character,
       `7' for the last character and `0' for the rest.

       All three forms of name may be preceded by a  pattern  in  parentheses.
       If  this	 is  given,  the value will be used only for matches in groups
       whose names are matched by the pattern given in the  parentheses.   For
       example,	 `(g*)m*=43'  highlights  all  matches	beginning  with `m' in
       groups whose names  begin with `g' using the color code `43'.  In  case
       of the `lc', `rc', and `ec' codes, the group pattern is ignored.

       Note also that all patterns are tried in the order in which they appear
       in the parameter value until the first one matches which is then	 used.
       Patterns	 may  be  matched  against completions, descriptions (possibly
       with spaces appended for padding), or lines consisting of a  completion
       followed by a description.  For consistent coloring it may be necessary
       to use more than one pattern or a pattern with backreferences.

       When printing a match, the code prints the value of lc, the  value  for
       the  file-type or the last matching specification with a `*', the value
       of rc, the string to display for the match itself, and then  the	 value
       of  ec  if that is defined or the values of lc, no, and rc if ec is not
       defined.

       The default values are ISO 6429 (ANSI) compliant and  can  be  used  on
       vt100 compatible terminals such as xterms.  On monochrome terminals the
       default values will have no visible effect.  The colors	function  from
       the  contribution  can be used to get associative arrays containing the
       codes for ANSI terminals (see the section `Other Functions' in  zshcon‐
       trib(1)).    For	  example,   after   loading  colors,  one  could  use
       `$color[red]'  to  get  the  code  for	foreground   color   red   and
       `$color[bg-green]' for the code for background color green.

       If  the completion system invoked by compinit is used, these parameters
       should not be set directly because the  system  controls	 them  itself.
       Instead, the list-colors style should be used (see the section `Comple‐
       tion System Configuration' in zshcompsys(1)).

   Scrolling in completion listings
       To enable scrolling through a completion list, the LISTPROMPT parameter
       must  be set.  Its value will be used as the prompt; if it is the empty
       string, a default prompt will be used.  The value may  contain  escapes
       of  the	form  `%x'.   It  supports the escapes `%B', `%b', `%S', `%s',
       `%U', `%u', `%F', `%f', `%K', `%k' and `%{...%}'	 used  also  in	 shell
       prompts	as well as three pairs of additional sequences: a `%l' or `%L'
       is replaced by the number of the last line shown and the	 total	number
       of  lines  in  the form `number/total'; a `%m' or `%M' is replaced with
       the number of the last match shown and the total number of matches; and
       `%p'  or	 `%P'  is replaced with `Top', `Bottom' or the position of the
       first line shown in percent of the total number of lines, respectively.
       In  each	 of  these  cases  the	form with the uppercase letter will be
       replaced with a string of fixed width, padded to the right with spaces,
       while the lowercase form will not be padded.

       If the parameter LISTPROMPT is set, the completion code will not ask if
       the list should be shown.  Instead it immediately starts displaying the
       list,  stopping	after  the  first screenful, showing the prompt at the
       bottom, waiting for a  keypress	after  temporarily  switching  to  the
       listscroll  keymap.   Some  of the zle functions have a special meaning
       while scrolling lists:

       send-break
	      stops listing discarding the key pressed

       accept-line, down-history, down-line-or-history
       down-line-or-search, vi-down-line-or-history
	      scrolls forward one line

       complete-word, menu-complete, expand-or-complete
       expand-or-complete-prefix, menu-complete-or-expand
	      scrolls forward one screenful

       accept-search
	      stop listing but take no other action

       Every other character stops listing and immediately processes  the  key
       as  usual.   Any key that is not bound in the listscroll keymap or that
       is bound	 to  undefined-key  is	looked	up  in	the  keymap  currently
       selected.

       As for the ZLS_COLORS and ZLS_COLOURS parameters, LISTPROMPT should not
       be set directly when using the shell function based completion  system.
       Instead, the list-prompt style should be used.

   Menu selection
       The  zsh/complist  module also offers an alternative style of selecting
       matches from a list, called menu selection, which can be	 used  if  the
       shell is set up to return to the last prompt after showing a completion
       list (see the ALWAYS_LAST_PROMPT option in zshoptions(1)).

       Menu selection can  be  invoked	directly  by  the  widget  menu-select
       defined	by  this  module.   This  is a standard ZLE widget that can be
       bound to a key in the usual way as described in zshzle(1).

       Alternatively, the parameter MENUSELECT can be set to an integer, which
       gives  the  minimum  number of matches that must be present before menu
       selection is automatically turned on.  This second method requires that
       menu  completion	 be  started,  either  directly	 from a widget such as
       menu-complete, or due to one of the options MENU_COMPLETE or  AUTO_MENU
       being  set.  If MENUSELECT is set, but is 0, 1 or empty, menu selection
       will always be started during an ambiguous menu completion.

       When using the completion system based on shell functions, the  MENUSE‐
       LECT  parameter should not be used (like the ZLS_COLORS and ZLS_COLOURS
       parameters described above).  Instead, the menu style  should  be  used
       with the select=... keyword.

       After  menu  selection is started, the matches will be listed. If there
       are more matches than fit on the screen, only the  first	 screenful  is
       shown.	The  matches  to  insert into the command line can be selected
       from this list.	In the list one match is highlighted using  the	 value
       for ma from the ZLS_COLORS or ZLS_COLOURS parameter.  The default value
       for this is `7' which forces the selected match to be highlighted using
       standout	 mode  on  a vt100-compatible terminal.	 If neither ZLS_COLORS
       nor ZLS_COLOURS is set, the same terminal control sequence as  for  the
       `%S' escape in prompts is used.

       If  there  are  more  matches  than fit on the screen and the parameter
       MENUPROMPT is set, its value will be shown below the matches.  It  sup‐
       ports  the  same	 escape sequences as LISTPROMPT, but the number of the
       match or line shown will be that of the one where the mark  is  placed.
       If its value is the empty string, a default prompt will be used.

       The  MENUSCROLL	parameter  can	be  used  to  specify  how the list is
       scrolled.  If the parameter is unset, this is done line by line, if  it
       is  set to `0' (zero), the list will scroll half the number of lines of
       the screen.  If the value is positive, it gives the number of lines  to
       scroll  and  if it is negative, the list will be scrolled the number of
       lines of the screen minus the (absolute) value.

       As for the ZLS_COLORS, ZLS_COLOURS and LISTPROMPT  parameters,  neither
       MENUPROMPT  nor	MENUSCROLL should be set directly when using the shell
       function based  completion  system.   Instead,  the  select-prompt  and
       select-scroll styles should be used.

       The completion code sometimes decides not to show all of the matches in
       the list.  These hidden matches are either matches for which  the  com‐
       pletion	function  which	 added them explicitly requested that they not
       appear in the list (using the -n option of the compadd builtin command)
       or  they	 are  matches  which  duplicate	 a  string already in the list
       (because they differ only in things like prefixes or suffixes that  are
       not  displayed).	  In  the  list used for menu selection, however, even
       these matches are shown so that it is  possible	to  select  them.   To
       highlight such matches the hi and du capabilities in the ZLS_COLORS and
       ZLS_COLOURS parameters are supported for hidden matches	of  the	 first
       and second kind, respectively.

       Selecting matches is done by moving the mark around using the zle move‐
       ment functions.	When not all matches can be shown on the screen at the
       same  time,  the	 list will scroll up and down when crossing the top or
       bottom line.  The following zle functions have special  meaning	during
       menu  selection.	  Note that the following always perform the same task
       within the menu selection map and cannot be replaced  by	 user  defined
       widgets, nor can the set of functions be extended:

       accept-line, accept-search
	      accept  the  current  match and leave menu selection (but do not
	      cause the command line to be accepted)

       send-break
	      leaves menu selection and restores the previous contents of  the
	      command line

       redisplay, clear-screen
	      execute their normal function without leaving menu selection

       accept-and-hold, accept-and-menu-complete
	      accept  the  currently  inserted	match  and  continue selection
	      allowing to select the next match to insert into the line

       accept-and-infer-next-history
	      accepts the current match and then tries	completion  with  menu
	      selection again;	in the case of files this allows one to select
	      a directory and immediately attempt to complete files in it;  if
	      there are no matches, a message is shown and one can use undo to
	      go back to completion on the previous  level,  every  other  key
	      leaves  menu  selection (including the other zle functions which
	      are otherwise special during menu selection)

       undo   removes matches inserted during the menu selection by one of the
	      three functions before

       down-history, down-line-or-history
       vi-down-line-or-history,	 down-line-or-search
	      moves the mark one line down

       up-history, up-line-or-history
       vi-up-line-or-history, up-line-or-search
	      moves the mark one line up

       forward-char, vi-forward-char
	      moves the mark one column right

       backward-char, vi-backward-char
	      moves the mark one column left

       forward-word, vi-forward-word
       vi-forward-word-end, emacs-forward-word
	      moves the mark one screenful down

       backward-word, vi-backward-word, emacs-backward-word
	      moves the mark one screenful up

       vi-forward-blank-word, vi-forward-blank-word-end
	      moves the mark to the first line of the next group of matches

       vi-backward-blank-word
	      moves the mark to the last line of the previous group of matches

       beginning-of-history
	      moves the mark to the first line

       end-of-history
	      moves the mark to the last line

       beginning-of-buffer-or-history, beginning-of-line
       beginning-of-line-hist, vi-beginning-of-line
	      moves the mark to the leftmost column

       end-of-buffer-or-history, end-of-line
       end-of-line-hist, vi-end-of-line
	      moves the mark to the rightmost column

       complete-word, menu-complete, expand-or-complete
       expand-or-complete-prefix, menu-expand-or-complete
	      moves the mark to the next match

       reverse-menu-complete
	      moves the mark to the previous match

       vi-insert
	      this toggles between normal and interactive mode; in interactive
	      mode the keys bound to self-insert and self-insert-unmeta insert
	      into  the	 command  line	as  in normal editing mode but without
	      leaving menu selection; after each character completion is tried
	      again  and the list changes to contain only the new matches; the
	      completion  widgets  make	 the  longest  unambiguous  string  be
	      inserted	in  the command line and undo and backward-delete-char
	      go back to the previous set of matches

       history-incremental-search-forward
       history-incremental-search-backward
	      this starts incremental searches in the list of completions dis‐
	      played;  in  this	 mode,	accept-line  only  leaves  incremental
	      search, going back to the normal menu selection mode

       All movement functions wrap around at the edges; any other zle function
       not  listed  leaves  menu  selection and executes that function.	 It is
       possible to make widgets in the above list do the  same	by  using  the
       form  of	 the  widget  with  a  `.'  in front.  For example, the widget
       `.accept-line' has the effect of leaving menu selection	and  accepting
       the entire command line.

       During  this  selection the widget uses the keymap menuselect.  Any key
       that is not defined in this keymap or that is bound to undefined-key is
       looked  up  in  the  keymap currently selected.	This is used to ensure
       that the most important keys used during selection (namely  the	cursor
       keys,  return,  and  TAB) have sensible defaults.  However, keys in the
       menuselect keymap can be modified directly using	 the  bindkey  builtin
       command	(see zshmodules(1)). For example, to make the return key leave
       menu selection without accepting the match currently selected one could
       call

	      bindkey -M menuselect '^M' send-break

       after loading the zsh/complist module.

THE ZSH/COMPUTIL MODULE
       The  zsh/computil module adds several builtin commands that are used by
       some of the completion functions in  the	 completion  system  based  on
       shell  functions	 (see  zshcompsys(1)  ).   Except  for compquote these
       builtin commands are very specialised and  thus	not  very  interesting
       when  writing your own completion functions.  In summary, these builtin
       commands are:

       comparguments
	      This is used by the _arguments function to do the	 argument  and
	      command  line parsing.  Like compdescribe it has an option -i to
	      do the parsing and initialize some internal  state  and  various
	      options to access the state information to decide what should be
	      completed.

       compdescribe
	      This is used by the _describe function to build the displays for
	      the  matches and to get the strings to add as matches with their
	      options.	On the first call one of the options -i or  -I	should
	      be  supplied  as the first argument.  In the first case, display
	      strings without the descriptions will be generated, in the  sec‐
	      ond  case,  the  string  used to separate the matches from their
	      descriptions must be  given  as  the  second  argument  and  the
	      descriptions  (if	 any)  will be shown.  All other arguments are
	      like the definition arguments to _describe itself.

	      Once compdescribe has been called with either the -i or  the  -I
	      option,  it  can be repeatedly called with the -g option and the
	      names of four parameters	as  its	 arguments.   This  will  step
	      through  the  different  sets  of matches and store the value of
	      compstate[list] in the first scalar, the options for compadd  in
	      the  second  array,  the	matches	 in  the  third array, and the
	      strings to be displayed in the completion listing in the	fourth
	      array.  The arrays may then be directly given to compadd to reg‐
	      ister the matches with the completion code.

       compfiles
	      Used by the _path_files function to optimize  complex  recursive
	      filename generation (globbing).  It does three things.  With the
	      -p and -P options it builds the glob patterns to use,  including
	      the  paths  already  handled and trying to optimize the patterns
	      with respect to the prefix and suffix  from  the	line  and  the
	      match  specification  currently  used.   The  -i option does the
	      directory tests for the ignore-parents style and the  -r	option
	      tests  if	 a  component for some of the matches are equal to the
	      string on the line and removes all  other	 matches  if  that  is
	      true.

       compgroups
	      Used  by	the  _tags  function to implement the internals of the
	      group-order style.  This only takes its arguments	 as  names  of
	      completion  groups and creates the groups for it (all six types:
	      sorted and unsorted,  both  without  removing  duplicates,  with
	      removing	all  duplicates	 and  with removing consecutive dupli‐
	      cates).

       compquote [ -p ] names ...
	      There may be reasons to write completion functions that have  to
	      add the matches using the -Q option to compadd and perform quot‐
	      ing themselves.  Instead of interpreting the first character  of
	      the  all_quotes  key  of	the  compstate special association and
	      using the q flag for parameter  expansions,  one	can  use  this
	      builtin command.	The arguments are the names of scalar or array
	      parameters and the values of  these  parameters  are  quoted  as
	      needed  for  the	innermost  quoting level.  If the -p option is
	      given, quoting is done as if there is  some  prefix  before  the
	      values  of the parameters, so that a leading equal sign will not
	      be quoted.

	      The return status is non-zero in case of an error and zero  oth‐
	      erwise.

       comptags
       comptry
	      These implement the internals of the tags mechanism.

       compvalues
	      Like comparguments, but for the _values function.

THE ZSH/CURSES MODULE
       The  zsh/curses	module makes available one builtin command and various
       parameters.

   Builtin
       zcurses init
       zcurses end
       zcurses addwin targetwin nlines ncols begin_y begin_x [ parentwin ]
       zcurses delwin targetwin
       zcurses refresh [ targetwin ... ]
       zcurses touch targetwin ...
       zcurses move targetwin new_y new_x
       zcurses clear targetwin [ redraw | eol | bot ]
       zcurses position targetwin array
       zcurses char targetwin character
       zcurses string targetwin string
       zcurses border targetwin border
       zcurses attr targetwin [ [+|-]attribute | fg_col/bg_col ] [...]
       zcurses bg targetwin [ [+|-]attribute | fg_col/bg_col | @char ] [...]
       zcurses scroll targetwin [ on | off | [+|-]lines ]
       zcurses input targetwin [ param [ kparam [ mparam ] ] ]
       zcurses mouse [ delay num | [+|-]motion ]
       zcurses timeout targetwin intval
       zcurses querychar targetwin [ param ]
       zcurses resize height width [ endwin | nosave | endwin_nosave ]
	      Manipulate curses windows.  All uses of this command  should  be
	      bracketed	 by  `zcurses  init'  to initialise use of curses, and
	      `zcurses end' to end it; omitting `zcurses end'  can  cause  the
	      terminal to be in an unwanted state.

	      The  subcommand  addwin  creates	a window with nlines lines and
	      ncols columns.  Its upper left corner  will  be  placed  at  row
	      begin_y and column begin_x of the screen.	 targetwin is a string
	      and refers to the	 name  of  a  window  that  is	not  currently
	      assigned.	  Note in particular the curses convention that verti‐
	      cal values appear before horizontal values.

	      If addwin is given an existing window as the final argument, the
	      new window is created as a subwindow of parentwin.  This differs
	      from an ordinary new window in that the  memory  of  the	window
	      contents is shared with the parent's memory.  Subwindows must be
	      deleted before their parent.  Note that the coordinates of  sub‐
	      windows  are  relative  to  the  screen, not the parent, as with
	      other windows.

	      Use the subcommand  delwin  to  delete  a	 window	 created  with
	      addwin.	Note  that end does not implicitly delete windows, and
	      that delwin does not erase the screen image of the window.

	      The window corresponding to the full visible  screen  is	called
	      stdscr;  it  always  exists  after  `zcurses init' and cannot be
	      delete with delwin.

	      The subcommand refresh will refresh window  targetwin;  this  is
	      necessary	 to  make  any pending changes (such as characters you
	      have prepared for output	with  char)  visible  on  the  screen.
	      refresh  without an argument causes the screen to be cleared and
	      redrawn.	If multiple windows are given, the screen  is  updated
	      once at the end.

	      The  subcommand  touch  marks  the targetwins listed as changed.
	      This is necessary before refreshing windows if a window that was
	      in front of another window (which may be stdscr) is deleted.

	      The  subcommand  move  moves the cursor position in targetwin to
	      new coordinates new_y  and  new_x.   Note	 that  the  subcommand
	      string  (but  not the subcommand char) advances the cursor posi‐
	      tion over the characters added.

	      The subcommand clear erases the contents of targetwin.  One (and
	      no  more	than one) of three options may be specified.  With the
	      option redraw, in addition the next refresh  of  targetwin  will
	      cause  the  screen to be cleared and repainted.  With the option
	      eol, targetwin is only cleared to the end of the current	cursor
	      line.   With  the option bot, targetwin is cleared to the end of
	      the window, i.e everything to the right and below the cursor  is
	      cleared.

	      The subcommand position writes various positions associated with
	      targetwin into the array named array.  These are, in order:
	      -	     The y and x coordinates of the cursor relative to the top
		     left of targetwin
	      -	     The  y  and x coordinates of the top left of targetwin on
		     the screen
	      -	     The size of targetwin in y and x dimensions.

	      Outputting characters and	 strings  are  achieved	 by  char  and
	      string respectively.

	      To draw a border around window targetwin, use border.  Note that
	      the border is not	 subsequently  handled	specially:   in	 other
	      words,  the  border  is simply a set of characters output at the
	      edge of the window.  Hence it can be overwritten, can scroll off
	      the window, etc.

	      The  subcommand  attr  will  set targetwin's attributes or fore‐
	      ground/background color pair for any successive  character  out‐
	      put.   Each  attribute given on the line may be prepended by a +
	      to set or a - to unset that attribute; + is assumed  if  absent.
	      The  attributes  supported are blink, bold, dim, reverse, stand‐
	      out, and underline.

	      Each fg_col/bg_col attribute (to be read as `fg_col on  bg_col')
	      sets  the	 foreground and background color for character output.
	      The color default is sometimes available (in particular  if  the
	      library  is  ncurses),  specifying  the foreground or background
	      color  with  which  the  terminal	 started.   The	  color	  pair
	      default/default  is  always  available.  To  use more than the 8
	      named colors (red,  green,  etc.)	 construct  the	 fg_col/bg_col
	      pairs where fg_col and bg_col are decimal integers, e.g 128/200.
	      The maximum color value is 254 if the terminal supports 256 col‐
	      ors.

	      bg overrides the color and other attributes of all characters in
	      the window.  Its usual use is to set the	background  initially,
	      but  it  will  overwrite the attributes of any characters at the
	      time when it is called.  In addition to  the  arguments  allowed
	      with  attr,  an argument @char specifies a character to be shown
	      in otherwise blank areas of the window.  Owing to limitations of
	      curses  this cannot be a multibyte character (use of ASCII char‐
	      acters only is recommended).  As the specified set of attributes
	      override	the existing background, turning attributes off in the
	      arguments is not useful, though this does not cause an error.

	      The subcommand scroll can be used with on or off to  enabled  or
	      disable  scrolling  of  a window when the cursor would otherwise
	      move below the window due to typing or output.  It can  also  be
	      used with a positive or negative integer to scroll the window up
	      or down the given number of lines without changing  the  current
	      cursor position (which therefore appears to move in the opposite
	      direction relative to the	 window).   In	the  second  case,  if
	      scrolling is off it is temporarily turned on to allow the window
	      to be scrolled.

	      The subcommand input reads a single character  from  the	window
	      without  echoing it back.	 If param is supplied the character is
	      assigned to the parameter param, else  it	 is  assigned  to  the
	      parameter REPLY.

	      If  both param and kparam are supplied, the key is read in `key‐
	      pad' mode.  In this mode special keys such as function keys  and
	      arrow  keys  return the name of the key in the parameter kparam.
	      The key  names  are  the	macros	defined	 in  the  curses.h  or
	      ncurses.h	 with the prefix `KEY_' removed; see also the descrip‐
	      tion of the parameter zcurses_keycodes below.  Other keys	 cause
	      a	 value	to  be set in param as before.	On a successful return
	      only one of param or kparam contains  a  non-empty  string;  the
	      other is set to an empty string.

	      If  mparam  is  also  supplied,  input  attempts to handle mouse
	      input.  This is only available with the ncurses  library;	 mouse
	      handling	can  be	 detected  by  checking for the exit status of
	      `zcurses mouse' with no arguments.  If a mouse button is clicked
	      (or  double-  or	triple-clicked,	 or pressed or released with a
	      configurable delay from being clicked) then kparam is set to the
	      string  MOUSE,  and  mparam is set to an array consisting of the
	      following elements:
	      -	     An identifier to discriminate  different  input  devices;
		     this is only rarely useful.
	      -	     The x, y and z coordinates of the mouse click relative to
		     the full screen, as three elements in  that  order	 (i.e.
		     the  y coordinate is, unusually, after the x coordinate).
		     The z coordinate is only  available  for  a  few  unusual
		     input devices and is otherwise set to zero.
	      -	     Any events that occurred as separate items; usually there
		     will  be  just  one.   An	event  consists	 of   PRESSED,
		     RELEASED,	CLICKED, DOUBLE_CLICKED or TRIPLE_CLICKED fol‐
		     lowed immediately (in the same element) by the number  of
		     the button.
	      -	     If the shift key was pressed, the string SHIFT.
	      -	     If the control key was pressed, the string CTRL.
	      -	     If the alt key was pressed, the string ALT.

	      Not  all mouse events may be passed through to the terminal win‐
	      dow; most terminal emulators  handle  some  mouse	 events	 them‐
	      selves.	Note  that the ncurses manual implies that using input
	      both with and without mouse handling may cause the mouse	cursor
	      to appear and disappear.

	      The  subcommand  mouse  can  be used to configure the use of the
	      mouse.  There is no window argument; mouse options  are  global.
	      `zcurses mouse' with no arguments returns status 0 if mouse han‐
	      dling is possible, else status 1.	 Otherwise, the possible argu‐
	      ments  (which  may  be combined on the same command line) are as
	      follows.	delay num  sets	 the  maximum  delay  in  milliseconds
	      between  press  and  release events to be considered as a click;
	      the value 0 disables click resolution, and the  default  is  one
	      sixth  of	 a  second.   motion proceeded by an optional `+' (the
	      default) or - turns on or off reporting of mouse motion in addi‐
	      tion to clicks, presses and releases, which are always reported.
	      However, it appears reports for mouse motion are	not  currently
	      implemented.

	      The  subcommand timeout specifies a timeout value for input from
	      targetwin.  If intval is negative, `zcurses input' waits indefi‐
	      nitely  for  a  character	 to be typed; this is the default.  If
	      intval is zero, `zcurses input' returns immediately; if there is
	      typeahead	 it is returned, else no input is done and status 1 is
	      returned.	 If intval is positive, `zcurses input'	 waits	intval
	      milliseconds  for	 input and if there is none at the end of that
	      period returns status 1.

	      The subcommand querychar queries the character  at  the  current
	      cursor  position.	  The  return  values  are stored in the array
	      named param if supplied, else in the  array  reply.   The	 first
	      value  is	 the  character (which may be a multibyte character if
	      the system supports them); the second is the color pair  in  the
	      usual  fg_col/bg_col  notation,  or 0 if color is not supported.
	      Any attributes other than color that apply to the character,  as
	      set with the subcommand attr, appear as additional elements.

	      The  subcommand  resize  resizes stdscr and all windows to given
	      dimensions (windows that stick out from the new  dimensions  are
	      resized  down).  The  underlying	curses	extension (resize_term
	      call) can be unavailable. To verify,  zeroes  can	 be  used  for
	      height  and  width.  If  the  result  of	the  subcommand	 is 0,
	      resize_term is available (2 otherwise). Tests show that resizing
	      can  be normally accomplished by calling zcurses end and zcurses
	      refresh. The resize subcommand is provided for versatility. Mul‐
	      tiple  system  configurations  have been checked and zcurses end
	      and zcurses refresh are still needed for correct terminal	 state
	      after  resize.  To invoke them with resize, use endwin argument.
	      Using nosave argument will cause new terminal state  to  not  be
	      saved internally by zcurses. This is also provided for versatil‐
	      ity and should normally be not needed.

   Parameters
       ZCURSES_COLORS
	      Readonly integer.	 The maximum number  of	 colors	 the  terminal
	      supports.	  This	value is initialised by the curses library and
	      is not available until the first time zcurses init is run.

       ZCURSES_COLOR_PAIRS
	      Readonly	integer.   The	 maximum   number   of	 color	 pairs
	      fg_col/bg_col  that  may	be defined in `zcurses attr' commands;
	      note this limit applies to all color pairs that have  been  used
	      whether  or  not	they are currently active.  This value is ini‐
	      tialised by the curses library and is not	 available  until  the
	      first time zcurses init is run.

       zcurses_attrs
	      Readonly	array.	The attributes supported by zsh/curses; avail‐
	      able as soon as the module is loaded.

       zcurses_colors
	      Readonly array.  The colors supported by	zsh/curses;  available
	      as soon as the module is loaded.

       zcurses_keycodes
	      Readonly	array.	 The values that may be returned in the second
	      parameter supplied to `zcurses input' in the order in which they
	      are  defined  internally	by  curses.  Not all function keys are
	      listed, only F0; curses reserves space for F0 up to F63.

       zcurses_windows
	      Readonly array.  The current list of windows, i.e.  all  windows
	      that  have  been	created	 with `zcurses addwin' and not removed
	      with `zcurses delwin'.

THE ZSH/DATETIME MODULE
       The zsh/datetime module makes available one builtin command:

       strftime [ -s scalar ] format epochtime
       strftime -r [ -q ] [ -s scalar ] format timestring
	      Output the date denoted by epochtime in  the  format  specified.
	      See  strftime(3)	for  details.  The zsh extensions described in
	      the section EXPANSION OF PROMPT SEQUENCES in zshmisc(1) are also
	      available.

	      -q     Run  quietly;  suppress  printing	of  all error messages
		     described below.  Errors for invalid epochtime values are
		     always printed.

	      -r     With  the	option	-r  (reverse), use format to parse the
		     input string timestring and output the number of  seconds
		     since  the epoch at which the time occurred.  The parsing
		     is implemented by the system function strptime; see strp‐
		     time(3).	This  means that zsh format extensions are not
		     available, but for reverse lookup they are not required.

		     In most implementations of strftime any timezone  in  the
		     timestring	 is ignored and the local timezone declared by
		     the TZ environment variable is used; other parameters are
		     set to zero if not present.

		     If	 timestring  does not match format the command returns
		     status 1 and prints  an  error  message.	If  timestring
		     matches  format but not all characters in timestring were
		     used, the conversion succeeds but also  prints  an	 error
		     message.

		     If	 either	 of the system functions strptime or mktime is
		     not available, status 2 is returned and an error  message
		     is printed.

	      -s scalar
		     Assign the date string (or epoch time in seconds if -r is
		     given) to scalar instead of printing it.

	      Note that depending on the system's declared integral time type,
	      strftime	may  produce incorrect results for epoch times greater
	      than 2147483647 which corresponds to 2038-01-19 03:14:07 +0000.

       The zsh/datetime module makes available	several	 parameters;  all  are
       readonly:

       EPOCHREALTIME
	      A	 floating point value representing the number of seconds since
	      the epoch.  The notional	accuracy  is  to  nanoseconds  if  the
	      clock_gettime  call  is available and to microseconds otherwise,
	      but in practice the range of double precision floating point and
	      shell scheduling latencies may be significant effects.

       EPOCHSECONDS
	      An  integer  value  representing the number of seconds since the
	      epoch.

       epochtime
	      An array value containing the number of seconds since the	 epoch
	      in  the  first  element  and the remainder of the time since the
	      epoch in nanoseconds in the second element.  To ensure  the  two
	      elements	are consistent the array should be copied or otherwise
	      referenced as a single substitution before the values are	 used.
	      The following idiom may be used:

		     for secs nsecs in $epochtime; do
		       ...
		     done

THE ZSH/DB/GDBM MODULE
       The zsh/db/gdbm module is used to create "tied" associative arrays that
       interface to database files.  If the GDBM interface is  not  available,
       the  builtins defined by this module will report an error.  This module
       is also intended as a prototype for creating additional database inter‐
       faces,  so  the	ztie  builtin may move to a more generic module in the
       future.

       The builtins in this module are:

       ztie -d db/gdbm -f filename [ -r ] arrayname
	      Open the GDBM database identified by filename and,  if  success‐
	      ful,  create the associative array arrayname linked to the file.
	      To create a local	 tied  array,  the  parameter  must  first  be
	      declared, so commands similar to the following would be executed
	      inside a function scope:

		     local -A sampledb
		     ztie -d db/gdbm -f sample.gdbm sampledb

	      The -r option opens the database file for reading only, creating
	      a	 parameter  with the readonly attribute.  Without this option,
	      using `ztie' on a file for which the user does  not  have	 write
	      permission  is  an  error.   If writable, the database is opened
	      synchronously so fields changed  in  arrayname  are  immediately
	      written to filename.

	      Changes  to  the file modes filename after it has been opened do
	      not alter the state of arrayname,	 but  `typeset	-r  arrayname'
	      works as expected.

       zuntie [ -u ] arrayname ...
	      Close  the GDBM database associated with each arrayname and then
	      unset the parameter.  The -u option forces an unset  of  parame‐
	      ters made readonly with `ztie -r'.

	      This  happens automatically if the parameter is explicitly unset
	      or its local scope (function) ends.  Note that a readonly param‐
	      eter  may	 not  be  explicitly unset, so the only way to unset a
	      global parameter created with `ztie -r' is to use `zuntie -u'.

       zgdbmpath parametername
	      Put path to database file assigned to parametername  into	 REPLY
	      scalar.

       zgdbm_tied
	      Array holding names of all tied parameters.

       The  fields of an associative array tied to GDBM are neither cached nor
       otherwise stored in memory, they are read from or written to the	 data‐
       base  on	 each  reference.  Thus, for example, the values in a readonly
       array may be changed by a second writer of the same database file.

THE ZSH/DELTOCHAR MODULE
       The zsh/deltochar module makes available two ZLE functions:

       delete-to-char
	      Read a character from the keyboard, and delete from  the	cursor
	      position	up to and including the next (or, with repeat count n,
	      the nth) instance of that	 character.   Negative	repeat	counts
	      mean delete backwards.

       zap-to-char
	      This  behaves  like delete-to-char, except that the final occur‐
	      rence of the character itself is not deleted.

THE ZSH/EXAMPLE MODULE
       The zsh/example module makes available one builtin command:

       example [ -flags ] [ args ... ]
	      Displays the flags and arguments it is invoked with.

       The purpose of the module is to serve as an example of how to  write  a
       module.

THE ZSH/FILES MODULE
       The  zsh/files  module  makes  available	 some common commands for file
       manipulation as builtins; these commands are probably  not  needed  for
       many  normal  situations but can be useful in emergency recovery situa‐
       tions with constrained resources.  The commands do  not	implement  all
       features now required by relevant standards committees.

       For  all commands, a variant beginning zf_ is also available and loaded
       automatically.  Using the features capability of zmodload will let  you
       load  only  those names you want.  Note that it's possible to load only
       the builtins with zsh-specific names using the following command:

	      zmodload -m -F zsh/files b:zf_\*

       The commands loaded by default are:

       chgrp [ -hRs ] group filename ...
	      Changes group of files specified.	 This is equivalent  to	 chown
	      with a user-spec argument of `:group'.

       chown [ -hRs ] user-spec filename ...
	      Changes ownership and group of files specified.

	      The user-spec can be in four forms:

	      user   change owner to user; do not change group
	      user:: change owner to user; do not change group
	      user:  change  owner  to	user;  change  group to user's primary
		     group
	      user:group
		     change owner to user; change group to group
	      :group do not change owner; change group to group

	      In each case, the `:' may instead be a `.'.  The rule is that if
	      there  is a `:' then the separator is `:', otherwise if there is
	      a `.' then the separator is `.', otherwise there is  no  separa‐
	      tor.

	      Each  of user and group may be either a username (or group name,
	      as appropriate) or a decimal user ID (group ID).	Interpretation
	      as  a name takes precedence, if there is an all-numeric username
	      (or group name).

	      If the target is a symbolic link, the -h option causes chown  to
	      set the ownership of the link instead of its target.

	      The  -R option causes chown to recursively descend into directo‐
	      ries, changing the ownership of all files in the directory after
	      changing the ownership of the directory itself.

	      The  -s  option  is  a zsh extension to chown functionality.  It
	      enables paranoid behaviour, intended to avoid security  problems
	      involving	 a chown being tricked into affecting files other than
	      the ones intended.  It will refuse to follow symbolic links,  so
	      that  (for  example) ``chown luser /tmp/foo/passwd'' can't acci‐
	      dentally chown /etc/passwd if /tmp/foo happens to be a  link  to
	      /etc.  It will also check where it is after leaving directories,
	      so that a recursive chown of a deep directory tree can't end  up
	      recursively chowning /usr as a result of directories being moved
	      up the tree.

       ln [ -dfhins ] filename dest
       ln [ -dfhins ] filename ... dir
	      Creates hard (or, with -s, symbolic) links.  In the first	 form,
	      the specified destination is created, as a link to the specified
	      filename.	 In the second form, each of the filenames is taken in
	      turn,  and  linked to a pathname in the specified directory that
	      has the same last pathname component.

	      Normally, ln will not attempt to create hard links  to  directo‐
	      ries.   This check can be overridden using the -d option.	 Typi‐
	      cally only the super-user can actually succeed in creating  hard
	      links  to directories.  This does not apply to symbolic links in
	      any case.

	      By default, existing files cannot be replaced by links.  The  -i
	      option  causes  the  user to be queried about replacing existing
	      files.  The -f option  causes  existing  files  to  be  silently
	      deleted, without querying.  -f takes precedence.

	      The  -h and -n options are identical and both exist for compati‐
	      bility; either one indicates that if the	target	is  a  symlink
	      then  it	should not be dereferenced.  Typically this is used in
	      combination with -sf so that if an existing  link	 points	 to  a
	      directory then it will be removed, instead of followed.  If this
	      option is used with multiple filenames and the target is a  sym‐
	      bolic link pointing to a directory then the result is an error.

       mkdir [ -p ] [ -m mode ] dir ...
	      Creates  directories.   With  the -p option, non-existing parent
	      directories are first created if necessary, and there will be no
	      complaint if the directory already exists.  The -m option can be
	      used to specify (in octal) a set of  file	 permissions  for  the
	      created  directories, otherwise mode 777 modified by the current
	      umask (see umask(2)) is used.

       mv [ -fi ] filename dest
       mv [ -fi ] filename ... dir
	      Moves files.  In the first form, the specified filename is moved
	      to  the  specified destination.  In the second form, each of the
	      filenames is taken in turn, and moved to a pathname in the spec‐
	      ified directory that has the same last pathname component.

	      By  default,  the user will be queried before replacing any file
	      that the user cannot  write  to,	but  writable  files  will  be
	      silently	removed.   The -i option causes the user to be queried
	      about replacing any existing files.  The -f  option  causes  any
	      existing	files  to  be  silently deleted, without querying.  -f
	      takes precedence.

	      Note that this mv will not move files across devices.   Histori‐
	      cal  versions  of	 mv,  when actual renaming is impossible, fall
	      back on  copying	and  removing  files;  if  this	 behaviour  is
	      desired,	use  cp	 and rm manually.  This may change in a future
	      version.

       rm [ -dfirs ] filename ...
	      Removes files and directories specified.

	      Normally, rm will not remove directories	(except	 with  the  -r
	      option).	 The  -d  option causes rm to try removing directories
	      with unlink (see unlink(2)), the same  method  used  for	files.
	      Typically	 only the super-user can actually succeed in unlinking
	      directories in this way.	-d takes precedence over -r.

	      By default, the user will be queried before  removing  any  file
	      that  the	 user  cannot  write  to,  but	writable files will be
	      silently removed.	 The -i option causes the user to  be  queried
	      about  removing  any  files.   The  -f option causes files to be
	      silently deleted, without querying,  and	suppresses  all	 error
	      indications.  -f takes precedence.

	      The -r option causes rm to recursively descend into directories,
	      deleting all files in the directory before removing  the	direc‐
	      tory with the rmdir system call (see rmdir(2)).

	      The  -s  option  is  a  zsh  extension  to rm functionality.  It
	      enables paranoid behaviour, intended to  avoid  common  security
	      problems	involving  a  root-run	rm being tricked into removing
	      files other than the ones intended.  It will  refuse  to	follow
	      symbolic	links,	so  that  (for example) ``rm /tmp/foo/passwd''
	      can't accidentally remove /etc/passwd if /tmp/foo happens to  be
	      a	 link  to  /etc.  It will also check where it is after leaving
	      directories, so that a recursive removal	of  a  deep  directory
	      tree  can't  end	up  recursively	 removing  /usr as a result of
	      directories being moved up the tree.

       rmdir dir ...
	      Removes empty directories specified.

       sync   Calls the system call of the  same  name	(see  sync(2)),	 which
	      flushes  dirty  buffers to disk.	It might return before the I/O
	      has actually been completed.

THE ZSH/LANGINFO MODULE
       The zsh/langinfo module makes available one parameter:

       langinfo
	      An associative array that maps langinfo elements to  their  val‐
	      ues.

	      Your implementation may support a number of the following keys:

	      CODESET,	D_T_FMT,  D_FMT,  T_FMT,  RADIXCHAR, THOUSEP, YESEXPR,
	      NOEXPR,  CRNCYSTR,  ABDAY_{1..7},	  DAY_{1..7},	ABMON_{1..12},
	      MON_{1..12},   T_FMT_AMPM,   AM_STR,   PM_STR,  ERA,  ERA_D_FMT,
	      ERA_D_T_FMT, ERA_T_FMT, ALT_DIGITS

THE ZSH/MAPFILE MODULE
       The zsh/mapfile module provides one special associative array parameter
       of the same name.

       mapfile
	      This  associative	 array	takes  as keys the names of files; the
	      resulting value is the  content  of  the	file.	The  value  is
	      treated  identically  to any other text coming from a parameter.
	      The value may also be assigned to, in which  case	 the  file  in
	      question	is  written (whether or not it originally existed); or
	      an element may be unset, which will delete the file in question.
	      For  example, `vared mapfile[myfile]' works as expected, editing
	      the file `myfile'.

	      When the array is accessed as a whole, the keys are the names of
	      files  in	 the  current  directory, and the values are empty (to
	      save a huge overhead in memory).	 Thus  ${(k)mapfile}  has  the
	      same  affect  as	the  glob operator *(D), since files beginning
	      with a dot are not special.  Care must be taken with expressions
	      such  as	rm  ${(k)mapfile}, which will delete every file in the
	      current directory without the usual `rm *' test.

	      The parameter mapfile may be made read-only; in that case, files
	      referenced may not be written or deleted.

	      A	 file  may  conveniently be read into an array as one line per
	      element with the form `array=("${(f@)mapfile[filename]}")'.  The
	      double  quotes  and the `@' are necessary to prevent empty lines
	      from being removed.  Note that if the file ends with a  newline,
	      the  shell  will split on the final newline, generating an addi‐
	      tional  empty  field;  this   can	  be   suppressed   by	 using
	      `array=("${(f@)${mapfile[filename]%$'\n'}}")'.

   Limitations
       Although	 reading  and  writing	of the file in question is efficiently
       handled, zsh's internal memory management may be	 arbitrarily  baroque;
       however,	 mapfile  is  usually  very  much more efficient than anything
       involving a loop.  Note in particular that the whole  contents  of  the
       file  will  always  reside physically in memory when accessed (possibly
       multiple times, due to standard parameter substitution operations).  In
       particular,  this  means	 handling  of sufficiently long files (greater
       than the machine's swap space, or than the range of the	pointer	 type)
       will be incorrect.

       No  errors  are	printed	 or  flagged  for non-existent, unreadable, or
       unwritable files, as the parameter mechanism is too low	in  the	 shell
       execution hierarchy to make this convenient.

       It  is  unfortunate that the mechanism for loading modules does not yet
       allow the user to specify the name of the shell parameter to  be	 given
       the special behaviour.

THE ZSH/MATHFUNC MODULE
       The  zsh/mathfunc  module  provides standard mathematical functions for
       use when evaluating mathematical formulae.  The syntax agrees with nor‐
       mal C and FORTRAN conventions, for example,

	      (( f = sin(0.3) ))

       assigns the sine of 0.3 to the parameter f.

       Most  functions	take  floating	point  arguments and return a floating
       point value.  However, any necessary conversions	 from  or  to  integer
       type  will  be  performed  automatically by the shell.  Apart from atan
       with a second argument and the abs, int and float functions, all	 func‐
       tions  behave as noted in the manual page for the corresponding C func‐
       tion, except that any arguments out of range for the function in	 ques‐
       tion will be detected by the shell and an error reported.

       The  following  functions  take a single floating point argument: acos,
       acosh, asin, asinh, atan, atanh, cbrt, ceil, cos, cosh, erf, erfc, exp,
       expm1,  fabs,  floor,  gamma,  j0, j1, lgamma, log, log10, log1p, logb,
       sin, sinh, sqrt, tan, tanh, y0, y1.  The atan function  can  optionally
       take  a	second	argument, in which case it behaves like the C function
       atan2.  The ilogb function takes a single floating point argument,  but
       returns an integer.

       The  function signgam takes no arguments, and returns an integer, which
       is the C variable of the same name, as  described  in  gamma(3).	  Note
       that  it	 is therefore only useful immediately after a call to gamma or
       lgamma.	Note also that `signgam()' and `signgam' are distinct  expres‐
       sions.

       The  functions  min, max, and sum are defined not in this module but in
       the zmathfunc autoloadable function, described in the  section  `Mathe‐
       matical Functions' in zshcontrib(1).

       The  following  functions  take two floating point arguments: copysign,
       fmod, hypot, nextafter.

       The following take an integer first argument and a floating point  sec‐
       ond argument: jn, yn.

       The  following take a floating point first argument and an integer sec‐
       ond argument: ldexp, scalb.

       The function abs does not convert the type of its single	 argument;  it
       returns	the  absolute  value  of  either a floating point number or an
       integer.	 The functions float and int convert their  arguments  into  a
       floating point or integer value (by truncation) respectively.

       Note  that  the C pow function is available in ordinary math evaluation
       as the `**' operator and is not provided here.

       The function rand48 is available if your system's mathematical  library
       has the function erand48(3).  It returns a pseudo-random floating point
       number between 0 and 1.	It takes a single string optional argument.

       If the argument is not present, the random number seed  is  initialised
       by  three calls to the rand(3) function --- this produces the same ran‐
       dom numbers as the next three values of $RANDOM.

       If the argument is present, it gives the name  of  a  scalar  parameter
       where  the  current  random  number  seed will be stored.  On the first
       call, the value must contain at least twelve  hexadecimal  digits  (the
       remainder of the string is ignored), or the seed will be initialised in
       the same manner as for a call to rand48 with no	argument.   Subsequent
       calls  to  rand48(param)	 will  then maintain the seed in the parameter
       param as a string of twelve hexadecimal digits, with no base signifier.
       The  random  number  sequences  for different parameters are completely
       independent, and are also independent from that used by calls to rand48
       with no argument.

       For example, consider

	      print $(( rand48(seed) ))
	      print $(( rand48() ))
	      print $(( rand48(seed) ))

       Assuming	 $seed	does  not  exist,  it will be initialised by the first
       call.  In the second call, the default seed is initialised; note,  how‐
       ever,  that  because of the properties of rand() there is a correlation
       between the seeds used for the two initialisations, so for more	secure
       uses,  you  should  generate  your  own	12-byte	 seed.	The third call
       returns to the same sequence of random numbers used in the first	 call,
       unaffected by the intervening rand48().

THE ZSH/NEWUSER MODULE
       The  zsh/newuser	 module	 is loaded at boot if it is available, the RCS
       option is set, and the PRIVILEGED option is not set (all three are true
       by default).  This takes place immediately after commands in the global
       zshenv file (typically /etc/zsh/zshenv), if any,	 have  been  executed.
       If the module is not available it is silently ignored by the shell; the
       module may safely be removed from $MODULE_PATH by the administrator  if
       it is not required.

       On  loading,  the  module  tests	 if any of the start-up files .zshenv,
       .zprofile, .zshrc or .zlogin exist in the directory given by the	 envi‐
       ronment	variable  ZDOTDIR, or the user's home directory if that is not
       set.  The test is not performed and the module halts processing if  the
       shell  was  in  an  emulation mode (i.e. had been invoked as some other
       shell than zsh).

       If none of the start-up files were found, the module then looks for the
       file  newuser  first in a sitewide directory, usually the parent direc‐
       tory of the site-functions directory, and if that is not found the mod‐
       ule searches in a version-specific directory, usually the parent of the
       functions  directory  containing	 version-specific  functions.	(These
       directories   can   be	configured   when   zsh	 is  built  using  the
       --enable-site-scriptdir=dir and --enable-scriptdir=dir flags to config‐
       ure,   respectively;   the   defaults  are  prefix/share/zsh  and  pre‐
       fix/share/zsh/$ZSH_VERSION where the default prefix is /usr/local.)

       If the file newuser is found, it is then sourced in the same manner  as
       a  start-up  file.   The	 file  is  expected to contain code to install
       start-up files for the user, however any valid shell code will be  exe‐
       cuted.

       The zsh/newuser module is then unconditionally unloaded.

       Note  that  it  is  possible  to achieve exactly the same effect as the
       zsh/newuser module by  adding  code  to	/etc/zsh/zshenv.   The	module
       exists  simply  to  allow  the shell to make arrangements for new users
       without the need for intervention by  package  maintainers  and	system
       administrators.

       The  script  supplied  with  the	 module	 invokes  the  shell  function
       zsh-newuser-install.  This may be invoked directly by the user even  if
       the  zsh/newuser module is disabled.  Note, however, that if the module
       is not installed the function will not be installed either.  The	 func‐
       tion  is documented in the section User Configuration Functions in zsh‐
       contrib(1).

THE ZSH/PARAMETER MODULE
       The zsh/parameter module gives access to	 some  of  the	internal  hash
       tables used by the shell by defining some special parameters.

       options
	      The keys for this associative array are the names of the options
	      that can	be  set	 and  unset  using  the	 setopt	 and  unsetopt
	      builtins.	 The  value of each key is either the string on if the
	      option is currently set, or the string  off  if  the  option  is
	      unset.  Setting a key to one of these strings is like setting or
	      unsetting the option, respectively.  Unsetting  a	 key  in  this
	      array is like setting it to the value off.

       commands
	      This  array gives access to the command hash table. The keys are
	      the names of external commands, the values are the pathnames  of
	      the  files  that	would  be  executed  when the command would be
	      invoked. Setting a key in this array defines a new entry in this
	      table  in the same way as with the hash builtin. Unsetting a key
	      as in `unset "commands[foo]"' removes the entry  for  the	 given
	      key from the command hash table.

       functions
	      This  associative array maps names of enabled functions to their
	      definitions. Setting a key in it is  like	 defining  a  function
	      with  the name given by the key and the body given by the value.
	      Unsetting a key removes the definition for the function named by
	      the key.

       dis_functions
	      Like functions but for disabled functions.

       functions_source
	      This  readonly associative array maps names of enabled functions
	      to the name of the file containing the source of the function.

	      For an autoloaded function that  has  already  been  loaded,  or
	      marked  for  autoload with an absolute path, or that has had its
	      path resolved with `functions -r', this is the  file  found  for
	      autoloading, resolved to an absolute path.

	      For  a  function	defined within the body of a script or sourced
	      file, this is the name of that file.  In this case, this is  the
	      exact path originally used to that file, which may be a relative
	      path.

	      For any other function, including any defined at an  interactive
	      prompt  or  an  autoload	function  whose	 path has not yet been
	      resolved, this is the empty string.  However, the	 hash  element
	      is  reported as defined just so long as the function is present:
	      the keys to this hash are the same as those to $funcions.

       dis_functions_source
	      Like functions_source but for disabled functions.

       builtins
	      This associative array gives information about the builtin  com‐
	      mands  currently	enabled. The keys are the names of the builtin
	      commands and the values are either `undefined' for builtin  com‐
	      mands that will automatically be loaded from a module if invoked
	      or `defined' for builtin commands that are already loaded.

       dis_builtins
	      Like builtins but for disabled builtin commands.

       reswords
	      This array contains the enabled reserved words.

       dis_reswords
	      Like reswords but for disabled reserved words.

       patchars
	      This array contains the enabled pattern characters.

       dis_patchars
	      Like patchars but for disabled pattern characters.

       aliases
	      This maps the names of the regular aliases currently enabled  to
	      their expansions.

       dis_aliases
	      Like aliases but for disabled regular aliases.

       galiases
	      Like aliases, but for global aliases.

       dis_galiases
	      Like galiases but for disabled global aliases.

       saliases
	      Like raliases, but for suffix aliases.

       dis_saliases
	      Like saliases but for disabled suffix aliases.

       parameters
	      The  keys in this associative array are the names of the parame‐
	      ters currently defined. The values are  strings  describing  the
	      type  of the parameter, in the same format used by the t parame‐
	      ter flag, see zshexpn(1) .  Setting or unsetting	keys  in  this
	      array is not possible.

       modules
	      An  associative array giving information about modules. The keys
	      are  the	names  of  the	modules	 loaded,  registered   to   be
	      autoloaded,  or  aliased.	 The  value says which state the named
	      module is in and is one of the strings  `loaded',	 `autoloaded',
	      or  `alias:name',	 where	name is the name the module is aliased
	      to.

	      Setting or unsetting keys in this array is not possible.

       dirstack
	      A normal array holding the elements of the directory stack. Note
	      that  the	 output	 of the dirs builtin command includes one more
	      directory, the current working directory.

       history
	      This associative array maps history event numbers	 to  the  full
	      history  lines.	Although  it  is  presented  as an associative
	      array, the array of all values (${history[@]}) is guaranteed  to
	      be  returned  in order from most recent to oldest history event,
	      that is, by decreasing history event number.

       historywords
	      A special array containing the  words  stored  in	 the  history.
	      These also appear in most to least recent order.

       jobdirs
	      This  associative array maps job numbers to the directories from
	      which the job was started (which may not be the  current	direc‐
	      tory of the job).

	      The  keys	 of  the associative arrays are usually valid job num‐
	      bers, and	 these	are  the  values  output  with,	 for  example,
	      ${(k)jobdirs}.   Non-numeric  job	 references  may  be used when
	      looking up a value; for example, ${jobdirs[%+]}  refers  to  the
	      current job.

       jobtexts
	      This associative array maps job numbers to the texts of the com‐
	      mand lines that were used to start the jobs.

	      Handling of the keys of the associative array  is	 as  described
	      for jobdirs above.

       jobstates
	      This associative array gives information about the states of the
	      jobs currently known. The keys are the job numbers and the  val‐
	      ues  are	strings of the form `job-state:mark:pid=state...'. The
	      job-state gives the state the whole job is currently in, one  of
	      `running',  `suspended', or `done'. The mark is `+' for the cur‐
	      rent job, `-' for the previous job and empty otherwise. This  is
	      followed	by  one `:pid=state' for every process in the job. The
	      pids are, of course, the process IDs and the state describes the
	      state of that process.

	      Handling	of  the	 keys of the associative array is as described
	      for jobdirs above.

       nameddirs
	      This associative array maps the names of	named  directories  to
	      the pathnames they stand for.

       userdirs
	      This associative array maps user names to the pathnames of their
	      home directories.

       usergroups
	      This associative array maps names of system groups of which  the
	      current user is a member to the corresponding group identifiers.
	      The contents are the same as the groups output by	 the  id  com‐
	      mand.

       funcfiletrace
	      This  array contains the absolute line numbers and corresponding
	      file names for the point where  the  current  function,  sourced
	      file,  or	 (if EVAL_LINENO is set) eval command was called.  The
	      array is of the same length as  funcsourcetrace  and  functrace,
	      but  differs  from funcsourcetrace in that the line and file are
	      the point of call, not the point of definition, and differs from
	      functrace in that all values are absolute line numbers in files,
	      rather than relative to the start of a function, if any.

       funcsourcetrace
	      This array contains the file  names  and	line  numbers  of  the
	      points  where  the functions, sourced files, and (if EVAL_LINENO
	      is set) eval commands currently  being  executed	were  defined.
	      The  line	 number is the line where the `function name' or `name
	      ()' started.  In the case of an autoloaded  function   the  line
	      number is reported as zero.  The format of each element is file‐
	      name:lineno.

	      For functions autoloaded from a file in native zsh format, where
	      only  the	 body of the function occurs in the file, or for files
	      that have been executed by the source or `.' builtins, the trace
	      information is shown as filename:0, since the entire file is the
	      definition.  The source file name is  resolved  to  an  absolute
	      path  when  the  function	 is loaded or the path to it otherwise
	      resolved.

	      Most users will be interested in the information	in  the	 func‐
	      filetrace array instead.

       funcstack
	      This  array  contains the names of the functions, sourced files,
	      and (if EVAL_LINENO is set) eval commands. currently being  exe‐
	      cuted.  The  first element is the name of the function using the
	      parameter.

	      The standard shell array zsh_eval_context can be used to	deter‐
	      mine  the	 type of shell construct being executed at each depth:
	      note, however, that is in the  opposite  order,  with  the  most
	      recent item last, and it is more detailed, for example including
	      an entry for toplevel, the main shell code being executed either
	      interactively  or	 from a script, which is not present in $func‐
	      stack.

       functrace
	      This array contains the names and line numbers  of  the  callers
	      corresponding  to	 the  functions currently being executed.  The
	      format of each element is name:lineno.  Callers are  also	 shown
	      for  sourced  files; the caller is the point where the source or
	      `.' command was executed.

THE ZSH/PCRE MODULE
       The zsh/pcre module makes some commands available as builtins:

       pcre_compile [ -aimxs ] PCRE
	      Compiles a perl-compatible regular expression.

	      Option -a will force the pattern to be anchored.	Option -i will
	      compile  a  case-insensitive  pattern.  Option -m will compile a
	      multi-line pattern; that is, ^ and $ will match newlines	within
	      the  pattern.   Option  -x  will	compile	 an  extended pattern,
	      wherein whitespace and # comments are ignored.  Option -s	 makes
	      the dot metacharacter match all characters, including those that
	      indicate newline.

       pcre_study
	      Studies the previously-compiled PCRE which may result in	faster
	      matching.

       pcre_match [ -v var ] [ -a arr ] [ -n offset ] [ -b ] string
	      Returns  successfully  if string matches the previously-compiled
	      PCRE.

	      Upon successful match, if	 the  expression  captures  substrings
	      within parentheses, pcre_match will set the array match to those
	      substrings, unless the -a option is given, in which case it will
	      set the array arr.  Similarly, the variable MATCH will be set to
	      the entire matched portion of the string, unless the  -v	option
	      is  given, in which case the variable var will be set.  No vari‐
	      ables are altered if there is no successful match.  A -n	option
	      starts  searching	 for  a match from the byte offset position in
	      string.  If the -b option is given, the variable	ZPCRE_OP  will
	      be  set  to  an offset pair string, representing the byte offset
	      positions of the entire matched portion within the string.   For
	      example,	a  ZPCRE_OP  set to "32 45" indicates that the matched
	      portion began on byte offset 32 and ended	 on  byte  offset  44.
	      Here, byte offset position 45 is the position directly after the
	      matched portion.	Keep in mind that the byte position isn't nec‐
	      essarily	the  same as the character position when UTF-8 charac‐
	      ters are involved.  Consequently, the byte offset positions  are
	      only to be relied on in the context of using them for subsequent
	      searches on string, using an offset position as an  argument  to
	      the  -n  option.	This is mostly used to implement the "find all
	      non-overlapping matches" functionality.

	      A simple example of "find all non-overlapping matches":

		     string="The following zip codes: 78884 90210 99513"
		     pcre_compile -m "\d{5}"
		     accum=()
		     pcre_match -b -- $string
		     while [[ $? -eq 0 ]] do
			 b=($=ZPCRE_OP)
			 accum+=$MATCH
			 pcre_match -b -n $b[2] -- $string
		     done
		     print -l $accum

       The zsh/pcre module makes available the following test condition:

       expr -pcre-match pcre
	      Matches a string against a perl-compatible regular expression.

	      For example,

		     [[ "$text" -pcre-match ^d+$ ]] &&
		     print text variable contains only "d's".

	      If the REMATCH_PCRE option is set, the =~ operator is equivalent
	      to  -pcre-match, and the NO_CASE_MATCH option may be used.  Note
	      that NO_CASE_MATCH never	applies	 to  the  pcre_match  builtin,
	      instead use the -i switch of pcre_compile.

THE ZSH/PARAM/PRIVATE MODULE
       The  zsh/param/private  module is used to create parameters whose scope
       is limited to the current function body, and  not  to  other  functions
       called by the current function.

       This module provides a single autoloaded builtin:

       private [ {+|-}AHUahlprtux ] [ {+|-}EFLRZi [ n ] ] [ name[=value] ... ]
	      The  private  builtin accepts all the same options and arguments
	      as local (zshbuiltins(1)) except	for  the  `-T'	option.	  Tied
	      parameters may not be made private.

	      If  used	at  the	 top level (outside a function scope), private
	      creates a normal parameter in the	 same  manner  as  declare  or
	      typeset.	 A warning about this is printed if WARN_CREATE_GLOBAL
	      is set (zshoptions(1)).  Used inside a function  scope,  private
	      creates  a  local	 parameter similar to one declared with local,
	      except having special properties noted below.

	      Special parameters which expose  or  manipulate  internal	 shell
	      state,  such  as	ARGC,  argv,  COLUMNS,	LINES, UID, EUID, IFS,
	      PROMPT, RANDOM, SECONDS, etc., cannot be made private unless the
	      `-h'  option  is used to hide the special meaning of the parame‐
	      ter.  This may change in the future.

       As with other typeset equivalents, private is  both  a  builtin	and  a
       reserved	 word,	so arrays may be assigned with parenthesized word list
       name=(value...) syntax.	However, the reserved word  `private'  is  not
       available until zsh/param/private is loaded, so care must be taken with
       order of execution and parsing for function definitions which use  pri‐
       vate.   To compensate for this, the module also adds the option `-P' to
       the `local' builtin to declare private parameters.

       For example, this construction fails if zsh/param/private has  not  yet
       been loaded when `bad_declaration' is defined:
	      bad_declaration() {
		zmodload zsh/param/private
		private array=( one two three )
	      }

       This  construction  works  because  local is already a keyword, and the
       module is loaded before the statement is executed:
	      good_declaration() {
		zmodload zsh/param/private
		local -P array=( one two three )
	      }

       The following is usable in scripts but may have trouble with autoload:
	      zmodload zsh/param/private
	      iffy_declaration() {
		private array=( one two three )
	      }

       The private builtin may always be used with scalar assignments and  for
       declarations without assignments.

       Parameters declared with private have the following properties:

       ·      Within  the  function  body  where it is declared, the parameter
	      behaves as a local, except as noted above for  tied  or  special
	      parameters.

       ·      The  type	 of  a parameter declared private cannot be changed in
	      the scope where it was declared, even if the parameter is unset.
	      Thus an array cannot be assigned to a private scalar, etc.

       ·      Within  any other function called by the declaring function, the
	      private parameter does NOT hide other  parameters	 of  the  same
	      name, so for example a global parameter of the same name is vis‐
	      ible and may be assigned	or  unset.   This  includes  calls  to
	      anonymous	 functions,  although  that  may  also	change	in the
	      future.

       ·      An exported private remains in the environment of	 inner	scopes
	      but appears unset for the current shell in those scopes.	Gener‐
	      ally, exporting private parameters should be avoided.

       Note that this differs from the static scope defined by	compiled  lan‐
       guages derived from C, in that the a new call to the same function cre‐
       ates a new scope, i.e., the parameter is still associated with the call
       stack  rather  than  with the function definition.  It differs from ksh
       `typeset -S' because the syntax used to	define	the  function  has  no
       bearing on whether the parameter scope is respected.

THE ZSH/REGEX MODULE
       The zsh/regex module makes available the following test condition:

       expr -regex-match regex
	      Matches  a  string  against a POSIX extended regular expression.
	      On successful match, matched portion of the string will normally
	      be  placed  in  the  MATCH variable.  If there are any capturing
	      parentheses within the regex, then the match array variable will
	      contain  those.	If the match is not successful, then the vari‐
	      ables will not be altered.

	      For example,

		     [[ alphabetical -regex-match ^a([^a]+)a([^a]+)a ]] &&
		     print -l $MATCH X $match

	      If the option REMATCH_PCRE is not set, then the =~ operator will
	      automatically  load  this	 module	 as needed and will invoke the
	      -regex-match operator.

	      If BASH_REMATCH is set, then the array BASH_REMATCH will be  set
	      instead of MATCH and match.

THE ZSH/SCHED MODULE
       The zsh/sched module makes available one builtin command and one param‐
       eter.

       sched [-o] [+]hh:mm[:ss] command ...
       sched [-o] [+]seconds command ...
       sched [ -item ]
	      Make an entry in the scheduled list of commands to execute.  The
	      time  may	 be specified in either absolute or relative time, and
	      either as hours, minutes and (optionally) seconds separated by a
	      colon,  or  seconds  alone.  An absolute number of seconds indi‐
	      cates the time since the epoch (1970/01/01 00:00); this is  use‐
	      ful in combination with the features in the zsh/datetime module,
	      see the zsh/datetime module entry in zshmodules(1).

	      With no arguments, prints the list of  scheduled	commands.   If
	      the  scheduled command has the -o flag set, this is shown at the
	      start of the command.

	      With the argument `-item', removes the given item from the list.
	      The  numbering of the list is continuous and entries are in time
	      order, so the numbering can change when  entries	are  added  or
	      deleted.

	      Commands	are  executed  either  immediately before a prompt, or
	      while the shell's line editor is waiting for input.  In the lat‐
	      ter case it is useful to be able to produce output that does not
	      interfere with the line being edited.  Providing the  option  -o
	      causes  the shell to clear the command line before the event and
	      redraw it afterwards.  This should be used  with	any  scheduled
	      event  that  produces  visible output to the terminal; it is not
	      needed, for example, with output that updates a terminal	emula‐
	      tor's title bar.

	      To  effect  changes to the editor buffer when an event executes,
	      use the `zle' command with no arguments to test whether the edi‐
	      tor is active, and if it is, then use `zle widget' to access the
	      editor via the named widget.

	      The sched builtin is not made  available	by  default  when  the
	      shell  starts in a mode emulating another shell.	It can be made
	      available with the command `zmodload -F zsh/sched b:sched'.

       zsh_scheduled_events
	      A readonly array corresponding to the events  scheduled  by  the
	      sched  builtin.  The indices of the array correspond to the num‐
	      bers shown when sched is run with no  arguments  (provided  that
	      the  KSH_ARRAYS option is not set).  The value of the array con‐
	      sists of the scheduled time in seconds since the epoch (see  the
	      section  `The zsh/datetime Module' for facilities for using this
	      number), followed by a colon, followed by any options (which may
	      be empty but will be preceded by a `-' otherwise), followed by a
	      colon, followed by the command to be executed.

	      The sched builtin should be used for  manipulating  the  events.
	      Note  that this will have an immediate effect on the contents of
	      the array, so that indices may become invalid.

THE ZSH/NET/SOCKET MODULE
       The zsh/net/socket module makes available one builtin command:

       zsocket [ -altv ] [ -d fd ] [ args ]
	      zsocket is implemented as a builtin to allow full use  of	 shell
	      command line editing, file I/O, and job control mechanisms.

   Outbound Connections
       zsocket [ -v ] [ -d fd ] filename
	      Open a new Unix domain connection to filename.  The shell param‐
	      eter REPLY will be set to the file  descriptor  associated  with
	      that  connection.	  Currently,  only stream connections are sup‐
	      ported.

	      If -d is specified, its argument will be	taken  as  the	target
	      file descriptor for the connection.

	      In order to elicit more verbose output, use -v.

	      File  descriptors can be closed with normal shell syntax when no
	      longer needed, for example:

		     exec {REPLY}>&-

   Inbound Connections
       zsocket -l [ -v ] [ -d fd ] filename
	      zsocket -l will open a socket listening on filename.  The	 shell
	      parameter	 REPLY	will  be set to the file descriptor associated
	      with that listener.

	      If -d is specified, its argument will be	taken  as  the	target
	      file descriptor for the connection.

	      In order to elicit more verbose output, use -v.

       zsocket -a [ -tv ] [ -d targetfd ] listenfd
	      zsocket  -a  will	 accept	 an  incoming connection to the socket
	      associated with listenfd.	 The shell parameter REPLY will be set
	      to the file descriptor associated with the inbound connection.

	      If  -d  is  specified,  its argument will be taken as the target
	      file descriptor for the connection.

	      If -t is specified, zsocket will return if no  incoming  connec‐
	      tion is pending.	Otherwise it will wait for one.

	      In order to elicit more verbose output, use -v.

THE ZSH/STAT MODULE
       The  zsh/stat module makes available one builtin command under two pos‐
       sible names:

       zstat [ -gnNolLtTrs ] [ -f fd ] [ -H hash ] [ -A array ] [ -F fmt ]
	     [ +element ] [ file ... ]
       stat ...
	      The command acts as a front end to the  stat  system  call  (see
	      stat(2)).	  The  same command is provided with two names; as the
	      name stat is often used by an external command it is recommended
	      that  only  the  zstat form of the command is used.  This can be
	      arranged by loading the module with  the	command	 `zmodload  -F
	      zsh/stat b:zstat'.

	      If  the  stat  call  fails, the appropriate system error message
	      printed and status 1 is returned.	 The  fields  of  struct  stat
	      give  information	 about	the files provided as arguments to the
	      command.	In addition to those available from the stat call,  an
	      extra element `link' is provided.	 These elements are:

	      device The number of the device on which the file resides.

	      inode  The  unique  number  of  the file on this device (`inode'
		     number).

	      mode   The mode of the file; that is, the file's type and access
		     permissions.   With  the -s option, this will be returned
		     as a string corresponding to the first column in the dis‐
		     play of the ls -l command.

	      nlink  The number of hard links to the file.

	      uid    The  user	ID  of	the  owner  of	the file.  With the -s
		     option, this is displayed as a user name.

	      gid    The group ID of the file.	With the -s  option,  this  is
		     displayed as a group name.

	      rdev   The  raw  device number.  This is only useful for special
		     devices.

	      size   The size of the file in bytes.

	      atime
	      mtime
	      ctime  The last access, modification and inode change  times  of
		     the  file,	 respectively,	as the number of seconds since
		     midnight GMT on 1st January, 1970.	 With the  -s  option,
		     these are printed as strings for the local time zone; the
		     format can be altered with the -F option, and with the -g
		     option the times are in GMT.

	      blksize
		     The number of bytes in one allocation block on the device
		     on which the file resides.

	      block  The number of disk blocks used by the file.

	      link   If the file is a link and the -L  option  is  in  effect,
		     this  contains  the name of the file linked to, otherwise
		     it is empty.  Note	 that  if  this	 element  is  selected
		     (``zstat  +link'')	 then  the  -L option is automatically
		     used.

	      A particular element may be selected by including its name  pre‐
	      ceded  by a `+' in the option list; only one element is allowed.
	      The element may be shortened to any unique set of leading	 char‐
	      acters.  Otherwise, all elements will be shown for all files.

	      Options:

	      -A array
		     Instead  of  displaying  the  results on standard output,
		     assign them to an array,  one  struct  stat  element  per
		     array  element for each file in order.  In this case nei‐
		     ther the name of the element nor the name	of  the	 files
		     appears  in array unless the -t or -n options were given,
		     respectively.  If -t is given, the element	 name  appears
		     as	 a  prefix  to the appropriate array element; if -n is
		     given, the file name appears as a separate array  element
		     preceding	all  the others.  Other formatting options are
		     respected.

	      -H hash
		     Similar to -A, but instead assign	the  values  to	 hash.
		     The keys are the elements listed above.  If the -n option
		     is provided then the name of the file is included in  the
		     hash with key name.

	      -f fd  Use  the  file  on	 file  descriptor  fd instead of named
		     files; no list of file names is allowed in this case.

	      -F fmt Supplies a strftime (see strftime(3)) string for the for‐
		     matting of the time elements.  The -s option is implied.

	      -g     Show  the	time  elements	in  the GMT time zone.	The -s
		     option is implied.

	      -l     List the names of the type elements (to  standard	output
		     or	 an  array  as	appropriate)  and  return immediately;
		     options other than -A and arguments are ignored.

	      -L     Perform an lstat (see lstat(2)) rather than a stat system
		     call.   In	 this case, if the file is a link, information
		     about the link itself rather  than	 the  target  file  is
		     returned.	 This option is required to make the link ele‐
		     ment useful.  It's important to note  that	 this  is  the
		     exact opposite from ls(1), etc.

	      -n     Always  show  the names of files.	Usually these are only
		     shown when output is to standard output and there is more
		     than one file in the list.

	      -N     Never show the names of files.

	      -o     If a raw file mode is printed, show it in octal, which is
		     more useful for human consumption	than  the  default  of
		     decimal.	A  leading  zero will be printed in this case.
		     Note that this does not affect whether a raw or formatted
		     file  mode is shown, which is controlled by the -r and -s
		     options, nor whether a mode is shown at all.

	      -r     Print raw data (the default format) alongside string data
		     (the  -s  format); the string data appears in parentheses
		     after the raw data.

	      -s     Print mode, uid, gid  and	the  three  time  elements  as
		     strings  instead  of numbers.  In each case the format is
		     like that of ls -l.

	      -t     Always show the type names for  the  elements  of	struct
		     stat.   Usually  these  are  only shown when output is to
		     standard  output  and  no	individual  element  has  been
		     selected.

	      -T     Never show the type names of the struct stat elements.

THE ZSH/SYSTEM MODULE
       The  zsh/system	module	makes  available  various builtin commands and
       parameters.

   Builtins
       syserror [ -e errvar ] [ -p prefix ] [ errno | errname ]
	      This command prints out the error message associated with errno,
	      a system error number, followed by a newline to standard error.

	      Instead of the error number, a name errname, for example ENOENT,
	      may be used.  The set of names is the same as  the  contents  of
	      the array errnos, see below.

	      If  the  string  prefix  is given, it is printed in front of the
	      error message, with no intervening space.

	      If errvar is supplied, the entire message, without a newline, is
	      assigned to the parameter names errvar and nothing is output.

	      A	 return	 status	 of  0	indicates the message was successfully
	      printed (although it may not be useful if the error  number  was
	      out  of  the  system's range), a return status of 1 indicates an
	      error in the parameters, and a return status of 2 indicates  the
	      error name was not recognised (no message is printed for this).

       sysopen [ -arw ] [ -m permissions ] [ -o options ]
	       -u fd file
	      This  command  opens  a  file.  The -r, -w and -a flags indicate
	      whether the file should  be  opened  for	reading,  writing  and
	      appending,  respectively.	 The -m option allows the initial per‐
	      missions to use when creating a file to be  specified  in	 octal
	      form.   The  file	 descriptor  is	 specified  with -u. Either an
	      explicit file descriptor in the range 0 to 9 can be specified or
	      a variable name can be given to which the file descriptor number
	      will be assigned.

	      The -o option allows various system specific options to be spec‐
	      ified as a comma-separated list. The following is a list of pos‐
	      sible options. Note that, depending on the system, some may  not
	      be available.
	      cloexec
		     mark file to be closed when other programs are executed

	      create
	      creat  create file if it does not exist

	      excl   create file, error if it already exists

	      noatime
		     suppress updating of the file atime

	      nofollow
		     fail if file is a symbolic link

	      sync   request  that  writes wait until data has been physically
		     written

	      truncate
	      trunc  truncate file to size 0

	      To close the file, use one of the following:

		     exec {fd}<&-
		     exec {fd}>&-

       sysread [ -c countvar ] [ -i infd ] [ -o outfd ]
	       [ -s bufsize ] [ -t timeout ] [ param ]
	      Perform a single system read from file descriptor infd, or  zero
	      if that is not given.  The result of the read is stored in param
	      or REPLY if that is not given.  If countvar is given, the number
	      of bytes read is assigned to the parameter named by countvar.

	      The  maximum  number of bytes read is bufsize or 8192 if that is
	      not given, however the command returns as soon as any number  of
	      bytes was successfully read.

	      If  timeout  is  given, it specifies a timeout in seconds, which
	      may be zero to poll the file descriptor.	This is handled by the
	      poll  system call if available, otherwise the select system call
	      if available.

	      If outfd is given, an attempt is made to	write  all  the	 bytes
	      just  read to the file descriptor outfd.	If this fails, because
	      of a system error other than EINTR or because of an internal zsh
	      error  during  an	 interrupt, the bytes read but not written are
	      stored in the parameter named by param if supplied  (no  default
	      is  used	in  this  case),  and the number of bytes read but not
	      written is stored in the parameter named by countvar if that  is
	      supplied.	 If it was successful, countvar contains the full num‐
	      ber of bytes transferred, as usual, and param is not set.

	      The error EINTR (interrupted system call) is handled  internally
	      so  that	shell  interrupts  are transparent to the caller.  Any
	      other error causes a return.

	      The possible return statuses are
	      0	     At least one byte of data was successfully read  and,  if
		     appropriate, written.

	      1	     There  was	 an  error  in	the parameters to the command.
		     This is the only error for which a message is printed  to
		     standard error.

	      2	     There  was	 an error on the read, or on polling the input
		     file descriptor for a timeout.  The parameter ERRNO gives
		     the error.

	      3	     Data were successfully read, but there was an error writ‐
		     ing them to outfd.	 The parameter ERRNO gives the error.

	      4	     The attempt to read timed out.  Note this	does  not  set
		     ERRNO as this is not a system error.

	      5	     No system error occurred, but zero bytes were read.  This
		     usually indicates end of file.  The  parameters  are  set
		     according	to  the	 usual	rules;	no  write  to outfd is
		     attempted.

       sysseek [ -u fd ] [ -w start|end|current ] offset
	      The current file position at which future reads and writes  will
	      take  place is adjusted to the specified byte offset. The offset
	      is evaluated as a math expression. The -u option allows the file
	      descriptor  to  be specified. By default the offset is specified
	      relative to the start or the file but, with the -w option, it is
	      possible	to  specify  that the offset should be relative to the
	      current position or the end of the file.

       syswrite [ -c countvar ] [ -o outfd ] data
	      The data (a single string of bytes)  are	written	 to  the  file
	      descriptor  outfd,  or  1	 if that is not given, using the write
	      system call.  Multiple write operations may be used if the first
	      does not write all the data.

	      If  countvar  is	given, the number of byte written is stored in
	      the parameter named by countvar; this may not be the full length
	      of data if an error occurred.

	      The  error EINTR (interrupted system call) is handled internally
	      by retrying; otherwise an error causes the  command  to  return.
	      For  example, if the file descriptor is set to non-blocking out‐
	      put, an error EAGAIN (on some systems, EWOULDBLOCK)  may	result
	      in the command returning early.

	      The  return  status  may be 0 for success, 1 for an error in the
	      parameters to the command, or 2 for an error on  the  write;  no
	      error  message  is  printed  in the last case, but the parameter
	      ERRNO will reflect the error that occurred.

       zsystem flock [ -t timeout ] [ -f var ] [-er] file
       zsystem flock -u fd_expr
	      The builtin zsystem's subcommand flock  performs	advisory  file
	      locking  (via the fcntl(2) system call) over the entire contents
	      of the given file.  This form of locking requires the  processes
	      accessing the file to cooperate; its most obvious use is between
	      two instances of the shell itself.

	      In the first form the named file, which must already  exist,  is
	      locked  by  opening a file descriptor to the file and applying a
	      lock to the file descriptor.  The lock terminates when the shell
	      process  that created the lock exits; it is therefore often con‐
	      venient to create file locks within subshells, since the lock is
	      automatically  released  when  the  subshell exits.  Status 0 is
	      returned if the lock succeeds, else status 1.

	      In the second form the file descriptor given by  the  arithmetic
	      expression  fd_expr  is  closed,	releasing  a  lock.   The file
	      descriptor can be queried by using the `-f var' form during  the
	      lock; on a successful lock, the shell variable var is set to the
	      file descriptor used for locking.	 The lock will be released  if
	      the  file	 descriptor  is closed by any other means, for example
	      using `exec {var}>&-'; however, the form described here performs
	      a safety check that the file descriptor is in use for file lock‐
	      ing.

	      By default the shell waits indefinitely for the lock to succeed.
	      The  option  -t timeout specifies a timeout for the lock in sec‐
	      onds; currently this must be an integer.	The shell will attempt
	      to  lock	the  file  once	 a  second during this period.	If the
	      attempt times out, status 2 is returned.

	      If the option -e is given, the file descriptor for the  lock  is
	      preserved	 when the shell uses exec to start a new process; oth‐
	      erwise it is closed at that point and the lock released.

	      If the option -r is given, the lock is only for reading,	other‐
	      wise  it	is  for	 reading  and writing.	The file descriptor is
	      opened accordingly.

       zsystem supports subcommand
	      The builtin zsystem's subcommand supports tests whether a	 given
	      subcommand is supported.	It returns status 0 if so, else status
	      1.  It operates silently unless there was a syntax  error	 (i.e.
	      the  wrong  number  of  arguments),  in which case status 255 is
	      returned.	 Status 1 can indicate one of two things:   subcommand
	      is  known	 but not supported by the current operating system, or
	      subcommand is not known (possibly because this is an older  ver‐
	      sion of the shell before it was implemented).

   Math Functions
       systell(fd)
	      The  systell math function returns the current file position for
	      the file descriptor passed as an argument.

   Parameters
       errnos A readonly array of the names of errors defined on  the  system.
	      These  are typically macros defined in C by including the system
	      header file errno.h.  The	 index	of  each  name	(assuming  the
	      option  KSH_ARRAYS  is  unset)  corresponds to the error number.
	      Error numbers num before the last known error which have no name
	      are given the name Enum in the array.

	      Note that aliases for errors are not handled; only the canonical
	      name is used.

       sysparams
	      A readonly associative array.  The keys are:

	      pid    Returns the process ID of the current  process,  even  in
		     subshells.	  Compare  $$, which returns the process ID of
		     the main shell process.

	      ppid   Returns the process ID  of	 the  parent  of  the  current
		     process, even in subshells.  Compare $PPID, which returns
		     the process ID of the parent of the main shell process.

THE ZSH/NET/TCP MODULE
       The zsh/net/tcp module makes available one builtin command:

       ztcp [ -acflLtv ] [ -d fd ] [ args ]
	      ztcp is implemented as a builtin to allow full use of shell com‐
	      mand line editing, file I/O, and job control mechanisms.

	      If  ztcp	is run with no options, it will output the contents of
	      its session table.

	      If it is run with only the option -L, it will  output  the  con‐
	      tents  of	 the  session table in a format suitable for automatic
	      parsing.	The option is ignored if given with a command to  open
	      or  close a session.  The output consists of a set of lines, one
	      per session, each containing the following elements separated by
	      spaces:

	      File descriptor
		     The  file descriptor in use for the connection.  For nor‐
		     mal inbound (I) and outbound (O) connections this may  be
		     read and written by the usual shell mechanisms.  However,
		     it should only be close with `ztcp -c'.

	      Connection type
		     A letter indicating how the session was created:

		     Z	    A session created with the zftp command.

		     L	    A connection opened for listening with `ztcp -l'.

		     I	    An inbound connection accepted with `ztcp -a'.

		     O	    An outbound connection  created  with  `ztcp  host
			    ...'.

	      The local host
		     This  is  usually	set  to	 an all-zero IP address as the
		     address of the localhost is irrelevant.

	      The local port
		     This is likely to be zero unless the  connection  is  for
		     listening.

	      The remote host
		     This  is  the fully qualified domain name of the peer, if
		     available, else an IP address.   It  is  an  all-zero  IP
		     address for a session opened for listening.

	      The remote port
		     This is zero for a connection opened for listening.

   Outbound Connections
       ztcp [ -v ] [ -d fd ] host [ port ]
	      Open  a  new TCP connection to host.  If the port is omitted, it
	      will default to port 23.	The connection will be	added  to  the
	      session  table  and the shell parameter REPLY will be set to the
	      file descriptor associated with that connection.

	      If -d is specified, its argument will be	taken  as  the	target
	      file descriptor for the connection.

	      In order to elicit more verbose output, use -v.

   Inbound Connections
       ztcp -l [ -v ] [ -d fd ] port
	      ztcp  -l	will  open a socket listening on TCP port.  The socket
	      will be added to the session table and the shell parameter REPLY
	      will  be	set  to	 the file descriptor associated with that lis‐
	      tener.

	      If -d is specified, its argument will be	taken  as  the	target
	      file descriptor for the connection.

	      In order to elicit more verbose output, use -v.

       ztcp -a [ -tv ] [ -d targetfd ] listenfd
	      ztcp  -a	will accept an incoming connection to the port associ‐
	      ated with listenfd.  The connection will be added to the session
	      table  and  the  shell  parameter	 REPLY will be set to the file
	      descriptor associated with the inbound connection.

	      If -d is specified, its argument will be	taken  as  the	target
	      file descriptor for the connection.

	      If  -t  is specified, ztcp will return if no incoming connection
	      is pending.  Otherwise it will wait for one.

	      In order to elicit more verbose output, use -v.

   Closing Connections
       ztcp -cf [ -v ] [ fd ]
       ztcp -c [ -v ] [ fd ]
	      ztcp -c will close the socket associated with  fd.   The	socket
	      will be removed from the session table.  If fd is not specified,
	      ztcp will close everything in the session table.

	      Normally, sockets registered by zftp (see zshmodules(1) ) cannot
	      be closed this way.  In order to force such a socket closed, use
	      -f.

	      In order to elicit more verbose output, use -v.

   Example
       Here is how to create a TCP connection between two  instances  of  zsh.
       We  need	 to  pick  an unassigned port; here we use the randomly chosen
       5123.

       On host1,
	      zmodload zsh/net/tcp
	      ztcp -l 5123
	      listenfd=$REPLY
	      ztcp -a $listenfd
	      fd=$REPLY
       The second from last command blocks until there is an incoming  connec‐
       tion.

       Now  create  a connection from host2 (which may, of course, be the same
       machine):
	      zmodload zsh/net/tcp
	      ztcp host1 5123
	      fd=$REPLY

       Now on each host, $fd contains a file descriptor	 for  talking  to  the
       other.  For example, on host1:
	      print This is a message >&$fd
       and on host2:
	      read -r line <&$fd; print -r - $line
       prints `This is a message'.

       To tidy up, on host1:
	      ztcp -c $listenfd
	      ztcp -c $fd
       and on host2
	      ztcp -c $fd

THE ZSH/TERMCAP MODULE
       The zsh/termcap module makes available one builtin command:

       echotc cap [ arg ... ]
	      Output  the  termcap  value corresponding to the capability cap,
	      with optional arguments.

       The zsh/termcap module makes available one parameter:

       termcap
	      An associative array that maps termcap capability codes to their
	      values.

THE ZSH/TERMINFO MODULE
       The zsh/terminfo module makes available one builtin command:

       echoti cap [ arg ]
	      Output  the  terminfo value corresponding to the capability cap,
	      instantiated with arg if applicable.

       The zsh/terminfo module makes available one parameter:

       terminfo
	      An associative array that	 maps  terminfo	 capability  names  to
	      their values.

THE ZSH/ZFTP MODULE
       The zsh/zftp module makes available one builtin command:

       zftp subcommand [ args ]
	      The  zsh/zftp  module  is a client for FTP (file transfer proto‐
	      col).  It is implemented as a builtin to allow full use of shell
	      command  line  editing,  file  I/O,  and job control mechanisms.
	      Often, users will access it via shell functions providing a more
	      powerful	interface; a set is provided with the zsh distribution
	      and is described in zshzftpsys(1).  However, the zftp command is
	      entirely usable in its own right.

	      All  commands  consist  of the command name zftp followed by the
	      name of a subcommand.  These are listed below.  The return  sta‐
	      tus  of  each  subcommand	 is supposed to reflect the success or
	      failure of the remote operation.	See a description of the vari‐
	      able ZFTP_VERBOSE for more information on how responses from the
	      server may be printed.

   Subcommands
       open host[:port] [ user [ password [ account ] ] ]
	      Open a new FTP session to host, which  may  be  the  name	 of  a
	      TCP/IP  connected host or an IP number in the standard dot nota‐
	      tion.  If the argument is in the form host:port, open a  connec‐
	      tion to TCP port port instead of the standard FTP port 21.  This
	      may be the name of a TCP service or a number:  see the  descrip‐
	      tion of ZFTP_PORT below for more information.

	      If  IPv6	addresses in colon format are used, the host should be
	      surrounded by quoted square brackets to distinguish it from  the
	      port, for example '[fe80::203:baff:fe02:8b56]'.  For consistency
	      this is allowed with all forms of host.

	      Remaining arguments are passed to the  login  subcommand.	  Note
	      that  if	no  arguments  beyond host are supplied, open will not
	      automatically call login.	 If no arguments at all are  supplied,
	      open will use the parameters set by the params subcommand.

	      After   a	  successful  open,  the  shell	 variables  ZFTP_HOST,
	      ZFTP_PORT, ZFTP_IP and ZFTP_SYSTEM  are  available;  see	`Vari‐
	      ables' below.

       login [ name [ password [ account ] ] ]
       user [ name [ password [ account ] ] ]
	      Login  the  user name with parameters password and account.  Any
	      of the parameters can be omitted, and will be read from standard
	      input if needed (name is always needed).	If standard input is a
	      terminal, a prompt for each one  will  be	 printed  on  standard
	      error and password will not be echoed.  If any of the parameters
	      are not used, a warning message is printed.

	      After  a	successful  login,  the	 shell	variables   ZFTP_USER,
	      ZFTP_ACCOUNT and ZFTP_PWD are available; see `Variables' below.

	      This  command may be re-issued when a user is already logged in,
	      and the server will first be reinitialized for a new user.

       params [ host [ user [ password [ account ] ] ] ]
       params -
	      Store the given parameters for a	later  open  command  with  no
	      arguments.   Only those given on the command line will be remem‐
	      bered.  If no arguments are given, the parameters currently  set
	      are  printed,  although  the  password  will appear as a line of
	      stars; the return status is one if no parameters were set,  zero
	      otherwise.

	      Any  of the parameters may be specified as a `?', which may need
	      to be quoted to protect it from shell expansion.	In this	 case,
	      the  appropriate	parameter  will be read from stdin as with the
	      login subcommand, including special handling  of	password.   If
	      the  `?' is followed by a string, that is used as the prompt for
	      reading the parameter instead of the default message (any neces‐
	      sary punctuation and whitespace should be included at the end of
	      the prompt).  The first letter of the parameter  (only)  may  be
	      quoted  with  a `\'; hence an argument "\\$word" guarantees that
	      the string from the shell parameter $word will be treated liter‐
	      ally, whether or not it begins with a `?'.

	      If  instead  a  single `-' is given, the existing parameters, if
	      any, are deleted.	 In that case, calling open with no  arguments
	      will cause an error.

	      The  list of parameters is not deleted after a close, however it
	      will be deleted if the zsh/zftp module is unloaded.

	      For example,

		     zftp params ftp.elsewhere.xx juser '?Password for juser: '

	      will store the host ftp.elsewhere.xx and the user juser and then
	      prompt  the  user	 for the corresponding password with the given
	      prompt.

       test   Test the connection; if the server  has  reported	 that  it  has
	      closed the connection (maybe due to a timeout), return status 2;
	      if no connection was open anyway, return status 1;  else	return
	      status  0.   The	test subcommand is silent, apart from messages
	      printed by the $ZFTP_VERBOSE mechanism, or error messages if the
	      connection closes.  There is no network overhead for this test.

	      The  test is only supported on systems with either the select(2)
	      or poll(2) system calls; otherwise the message `not supported on
	      this system' is printed instead.

	      The test subcommand will automatically be called at the start of
	      any other subcommand for the current session when	 a  connection
	      is open.

       cd directory
	      Change the remote directory to directory.	 Also alters the shell
	      variable ZFTP_PWD.

       cdup   Change the remote directory to the one higher in	the  directory
	      tree.  Note that cd .. will also work correctly on non-UNIX sys‐
	      tems.

       dir [ arg ... ]
	      Give a (verbose) listing of the remote directory.	 The args  are
	      passed directly to the server. The command's behaviour is imple‐
	      mentation dependent, but a UNIX server will typically  interpret
	      args as arguments to the ls command and with no arguments return
	      the result of `ls -l'. The directory is listed to standard  out‐
	      put.

       ls [ arg ... ]
	      Give  a  (short)	listing of the remote directory.  With no arg,
	      produces a raw list of the files in the directory, one per line.
	      Otherwise,  up to vagaries of the server implementation, behaves
	      similar to dir.

       type [ type ]
	      Change the type for the transfer to type, or print  the  current
	      type if type is absent.  The allowed values are `A' (ASCII), `I'
	      (Image, i.e. binary), or `B' (a synonym for `I').

	      The FTP default for a transfer is ASCII.	However, if zftp finds
	      that  the remote host is a UNIX machine with 8-bit byes, it will
	      automatically switch to using binary  for	 file  transfers  upon
	      open.  This can subsequently be overridden.

	      The  transfer type is only passed to the remote host when a data
	      connection is established;  this	command	 involves  no  network
	      overhead.

       ascii  The same as type A.

       binary The same as type I.

       mode [ S | B ]
	      Set  the	mode  type to stream (S) or block (B).	Stream mode is
	      the default; block mode is not widely supported.

       remote file ...
       local [ file ... ]
	      Print the size and last modification time of the remote or local
	      files.   If there is more than one item on the list, the name of
	      the file is printed first.  The first number is the  file	 size,
	      the second is the last modification time of the file in the for‐
	      mat CCYYMMDDhhmmSS consisting of year, month, date,  hour,  min‐
	      utes  and	 seconds in GMT.  Note that this format, including the
	      length, is guaranteed, so that time strings can be directly com‐
	      pared  via  the [[ builtin's < and > operators, even if they are
	      too long to be represented as integers.

	      Not all servers support the commands for retrieving this	infor‐
	      mation.  In that case, the remote command will print nothing and
	      return status 2, compared with status 1 for a file not found.

	      The local command (but not remote) may be	 used  with  no	 argu‐
	      ments,  in  which case the information comes from examining file
	      descriptor zero.	This is the same file as seen by a put command
	      with no further redirection.

       get file ...
	      Retrieve all files from the server, concatenating them and send‐
	      ing them to standard output.

       put file ...
	      For each file, read a file from standard input and send that  to
	      the remote host with the given name.

       append file ...
	      As  put, but if the remote file already exists, data is appended
	      to it instead of overwriting it.

       getat file point
       putat file point
       appendat file point
	      Versions of get, put and append which will start the transfer at
	      the  given point in the remote file.  This is useful for append‐
	      ing to an incomplete local file.	However, note that this	 abil‐
	      ity  is  not  universally supported by servers (and is not quite
	      the behaviour specified by the standard).

       delete file ...
	      Delete the list of files on the server.

       mkdir directory
	      Create a new directory directory on the server.

       rmdir directory
	      Delete the directory directory  on the server.

       rename old-name new-name
	      Rename file old-name to new-name on the server.

       site arg ...
	      Send a host-specific command to the server.  You	will  probably
	      only need this if instructed by the server to use it.

       quote arg ...
	      Send  the raw FTP command sequence to the server.	 You should be
	      familiar with the FTP command set as defined  in	RFC959	before
	      doing  this.   Useful  commands may include STAT and HELP.  Note
	      also the mechanism for returning messages as described  for  the
	      variable	ZFTP_VERBOSE  below,  in  particular that all messages
	      from the control connection are sent to standard error.

       close
       quit   Close the current data connection.  This unsets the shell param‐
	      eters  ZFTP_HOST,	 ZFTP_PORT,  ZFTP_IP,  ZFTP_SYSTEM, ZFTP_USER,
	      ZFTP_ACCOUNT, ZFTP_PWD, ZFTP_TYPE and ZFTP_MODE.

       session [ sessname ]
	      Allows multiple FTP sessions to be used at once.	 The  name  of
	      the  session  is	an arbitrary string of characters; the default
	      session is called `default'.  If this command is called  without
	      an  argument,  it	 will  list  all the current sessions; with an
	      argument, it will either switch to the existing  session	called
	      sessname, or create a new session of that name.

	      Each  session remembers the status of the connection, the set of
	      connection-specific shell parameters (the same set as are	 unset
	      when a connection closes, as given in the description of close),
	      and any user parameters specified with  the  params  subcommand.
	      Changing	to  a previous session restores those values; changing
	      to a new session initialises them in the same way as if zftp had
	      just  been  loaded.  The name of the current session is given by
	      the parameter ZFTP_SESSION.

       rmsession [ sessname ]
	      Delete a session; if a name is not given, the current session is
	      deleted.	If the current session is deleted, the earliest exist‐
	      ing session becomes the new current session, otherwise the  cur‐
	      rent  session  is	 not changed.  If the session being deleted is
	      the only one, a new session  called  `default'  is  created  and
	      becomes  the  current  session;  note that this is a new session
	      even if the session being deleted is also called	`default'.  It
	      is  recommended  that  sessions  not be deleted while background
	      commands which use zftp are still active.

   Parameters
       The following shell parameters are used by  zftp.   Currently  none  of
       them are special.

       ZFTP_TMOUT
	      Integer.	The time in seconds to wait for a network operation to
	      complete before returning an error.  If this is not set when the
	      module  is  loaded,  it  will  be given the default value 60.  A
	      value of zero turns off timeouts.	 If a timeout  occurs  on  the
	      control  connection  it  will  be closed.	 Use a larger value if
	      this occurs too frequently.

       ZFTP_IP
	      Readonly.	 The IP address of the current connection in dot nota‐
	      tion.

       ZFTP_HOST
	      Readonly.	  The  hostname	 of the current remote server.	If the
	      host was	opened	as  an	IP  number,  ZFTP_HOST	contains  that
	      instead;	this  saves the overhead for a name lookup, as IP num‐
	      bers are most commonly used when a nameserver is unavailable.

       ZFTP_PORT
	      Readonly.	 The number of the remote TCP port to which  the  con‐
	      nection  is open (even if the port was originally specified as a
	      named service).  Usually this is the standard FTP port, 21.

	      In the unlikely event that your system does not have the	appro‐
	      priate conversion functions, this appears in network byte order.
	      If your system is little-endian, the port then consists  of  two
	      swapped  bytes  and  the standard port will be reported as 5376.
	      In that case, numeric ports passed to zftp open will  also  need
	      to be in this format.

       ZFTP_SYSTEM
	      Readonly.	  The  system  type  string  returned by the server in
	      response to an FTP SYST request.	The most interesting case is a
	      string beginning "UNIX Type: L8", which ensures maximum compati‐
	      bility with a local UNIX host.

       ZFTP_TYPE
	      Readonly.	 The type to be used for data transfers ,  either  `A'
	      or `I'.	Use the type subcommand to change this.

       ZFTP_USER
	      Readonly.	 The username currently logged in, if any.

       ZFTP_ACCOUNT
	      Readonly.	  The  account name of the current user, if any.  Most
	      servers do not require an account name.

       ZFTP_PWD
	      Readonly.	 The current directory on the server.

       ZFTP_CODE
	      Readonly.	 The three digit code of the last FTP reply  from  the
	      server as a string.  This can still be read after the connection
	      is closed, and is not changed when the current session changes.

       ZFTP_REPLY
	      Readonly.	 The last line of the last reply sent by  the  server.
	      This  can	 still	be read after the connection is closed, and is
	      not changed when the current session changes.

       ZFTP_SESSION
	      Readonly.	 The name of the current FTP session; see the descrip‐
	      tion of the session subcommand.

       ZFTP_PREFS
	      A	 string	 of  preferences for altering aspects of zftp's behav‐
	      iour.  Each preference is a single character.  The following are
	      defined:

	      P	     Passive:  attempt to make the remote server initiate data
		     transfers.	 This is slightly more efficient than sendport
		     mode.   If	 the letter S occurs later in the string, zftp
		     will use sendport mode if passive mode is not available.

	      S	     Sendport:	initiate transfers by the  FTP	PORT  command.
		     If	 this  occurs before any P in the string, passive mode
		     will never be attempted.

	      D	     Dumb:  use only the bare minimum of FTP  commands.	  This
		     prevents  the  variables  ZFTP_SYSTEM  and	 ZFTP_PWD from
		     being set, and will mean all connections default to ASCII
		     type.   It	 may prevent ZFTP_SIZE from being set during a
		     transfer if the server does  not  send  it	 anyway	 (many
		     servers do).

	      If  ZFTP_PREFS is not set when zftp is loaded, it will be set to
	      a default of `PS', i.e. use passive mode if available, otherwise
	      fall back to sendport mode.

       ZFTP_VERBOSE
	      A	 string	 of digits between 0 and 5 inclusive, specifying which
	      responses from the server should be printed.  All	 responses  go
	      to  standard  error.  If any of the numbers 1 to 5 appear in the
	      string, raw responses from the server with reply codes beginning
	      with  that  digit	 will be printed to standard error.  The first
	      digit of the three digit reply code is defined by RFC959 to cor‐
	      respond to:

	      1.     A positive preliminary reply.

	      2.     A positive completion reply.

	      3.     A positive intermediate reply.

	      4.     A transient negative completion reply.

	      5.     A permanent negative completion reply.

	      It should be noted that, for unknown reasons, the reply `Service
	      not available', which forces termination	of  a  connection,  is
	      classified  as  421,  i.e.  `transient negative', an interesting
	      interpretation of the word `transient'.

	      The code 0 is special:  it indicates that all but the last  line
	      of  multiline  replies  read  from the server will be printed to
	      standard error in a processed format.   By  convention,  servers
	      use this mechanism for sending information for the user to read.
	      The appropriate reply code, if it	 matches  the  same  response,
	      takes priority.

	      If  ZFTP_VERBOSE	is not set when zftp is loaded, it will be set
	      to the default value 450, i.e., messages destined for  the  user
	      and  all	errors	will  be  printed.  A null string is valid and
	      specifies that no messages should be printed.

   Functions
       zftp_chpwd
	      If this function is set by the user, it is called every time the
	      directory changes on the server, including when a user is logged
	      in, or when a connection is closed.  In the last case, $ZFTP_PWD
	      will be unset; otherwise it will reflect the new directory.

       zftp_progress
	      If  this function is set by the user, it will be called during a
	      get, put or append operation each time sufficient data has  been
	      received from the host.  During a get, the data is sent to stan‐
	      dard output, so it is vital that this function should  write  to
	      standard error or directly to the terminal, not to standard out‐
	      put.

	      When it is called with a transfer	 in  progress,	the  following
	      additional shell parameters are set:

	      ZFTP_FILE
		     The name of the remote file being transferred from or to.

	      ZFTP_TRANSFER
		     A G for a get operation and a P for a put operation.

	      ZFTP_SIZE
		     The  total	 size  of the complete file being transferred:
		     the same as the first value provided by  the  remote  and
		     local  subcommands	 for a particular file.	 If the server
		     cannot  supply  this  value  for  a  remote  file	 being
		     retrieved,	 it  will not be set.  If input is from a pipe
		     the value may be incorrect and  correspond	 simply	 to  a
		     full pipe buffer.

	      ZFTP_COUNT
		     The  amount  of data so far transferred; a number between
		     zero and $ZFTP_SIZE, if that  is  set.   This  number  is
		     always available.

	      The  function  is initially called with ZFTP_TRANSFER set appro‐
	      priately and ZFTP_COUNT set to zero.  After the transfer is fin‐
	      ished,   the   function  will  be	 called	 one  more  time  with
	      ZFTP_TRANSFER set to GF or PF, in case it wishes to tidy up.  It
	      is   otherwise  never  called  twice  with  the  same  value  of
	      ZFTP_COUNT.

	      Sometimes the progress meter may cause disruption.  It is up  to
	      the user to decide whether the function should be defined and to
	      use unfunction when necessary.

   Problems
       A connection may not be opened in the left hand side of a pipe as  this
       occurs  in  a  subshell	and the file information is not updated in the
       main shell.  In the case of type or mode changes or closing the connec‐
       tion  in	 a subshell, the information is returned but variables are not
       updated until the next call to zftp.  Other status changes in subshells
       will not be reflected by changes to the variables (but should be other‐
       wise harmless).

       Deleting sessions while a zftp command is active in the background  can
       have  unexpected	 effects,  even	 if  it does not use the session being
       deleted.	 This is because all shell subprocesses share  information  on
       the state of all connections, and deleting a session changes the order‐
       ing of that information.

       On some operating systems, the control connection is not valid after  a
       fork(),	so  that  operations  in subshells, on the left hand side of a
       pipeline, or in the background are not possible,	 as  they  should  be.
       This is presumably a bug in the operating system.

THE ZSH/ZLE MODULE
       The zsh/zle module contains the Zsh Line Editor.	 See zshzle(1).

THE ZSH/ZLEPARAMETER MODULE
       The  zsh/zleparameter module defines two special parameters that can be
       used to access internal information of the Zsh Line  Editor  (see  zsh‐
       zle(1)).

       keymaps
	      This array contains the names of the keymaps currently defined.

       widgets
	      This  associative	 array contains one entry per widget. The name
	      of the widget is the key and the value gives  information	 about
	      the widget. It is either
		the string `builtin' for builtin widgets,
		a string of the form `user:name' for user-defined widgets,
		  where	 name  is  the name of the shell function implementing
	      the widget,
		a string of the form `completion:type:name'
		  for completion widgets,
		or a null value if the widget is not yet  fully	 defined.   In
	      the penultimate case, type is the name of the builtin widget the
	      completion widget imitates in its behavior and name is the  name
	      of the shell function implementing the completion widget.

THE ZSH/ZPROF MODULE
       When  loaded, the zsh/zprof causes shell functions to be profiled.  The
       profiling results can be obtained with the zprof builtin	 command  made
       available  by this module.  There is no way to turn profiling off other
       than unloading the module.

       zprof [ -c ]
	      Without the -c option, zprof lists profiling results to standard
	      output.	The  format  is	 comparable  to	 that of commands like
	      gprof.

	      At the top there is a summary listing all	 functions  that  were
	      called  at  least	 once.	 This  summary is sorted in decreasing
	      order of the amount of time spent in each.   The	lines  contain
	      the  number  of  the  function  in order, which is used in other
	      parts of the list in suffixes of the form `[num]', then the num‐
	      ber  of calls made to the function.  The next three columns list
	      the time in milliseconds spent in the function and  its  descen‐
	      dants,  the  average  time in milliseconds spent in the function
	      and its descendants per call and the percentage of time spent in
	      all  shell  functions used in this function and its descendants.
	      The following three  columns  give  the  same  information,  but
	      counting	only the time spent in the function itself.  The final
	      column shows the name of the function.

	      After the summary, detailed  information	about  every  function
	      that  was	 invoked  is listed, sorted in decreasing order of the
	      amount of time spent in each function and its descendants.  Each
	      of these entries consists of descriptions for the functions that
	      called the function described,  the  function  itself,  and  the
	      functions	 that  were  called  from it.  The description for the
	      function itself has the same format as in the summary (and shows
	      the same information).  The other lines don't show the number of
	      the function at the beginning  and  have	their  function	 named
	      indented	to  make it easier to distinguish the line showing the
	      function described in the section from the surrounding lines.

	      The information shown in this case is almost the same as in  the
	      summary,	but only refers to the call hierarchy being displayed.
	      For example, for a calling function the column showing the total
	      running  time lists the time spent in the described function and
	      its descendants only for the times when it was called from  that
	      particular  calling  function.  Likewise, for a called function,
	      this columns lists the total time spent in the  called  function
	      and  its	descendants only for the times when it was called from
	      the function described.

	      Also in this case, the column showing the number of calls	 to  a
	      function also shows a slash and then the total number of invoca‐
	      tions made to the called function.

	      As long as the zsh/zprof module is  loaded,  profiling  will  be
	      done  and multiple invocations of the zprof builtin command will
	      show the times and numbers of calls since the module was loaded.
	      With  the	 -c  option,  the zprof builtin command will reset its
	      internal counters and will not show the listing.

THE ZSH/ZPTY MODULE
       The zsh/zpty module offers one builtin:

       zpty [ -e ] [ -b ] name [ arg ... ]
	      The  arguments  following	 name  are  concatenated  with	spaces
	      between,	then  executed	as a command, as if passed to the eval
	      builtin.	The command runs under a newly assigned	 pseudo-termi‐
	      nal; this is useful for running commands non-interactively which
	      expect an interactive environment.  The name is not part of  the
	      command,	but is used to refer to this command in later calls to
	      zpty.

	      With the -e option, the pseudo-terminal is set up so that	 input
	      characters are echoed.

	      With the -b option, input to and output from the pseudo-terminal
	      are made non-blocking.

	      The shell parameter REPLY is set to the file descriptor assigned
	      to the master side of the pseudo-terminal.  This allows the ter‐
	      minal to be monitored with ZLE  descriptor  handlers  (see  zsh‐
	      zle(1))  or  manipulated	with  sysread  and  syswrite  (see THE
	      ZSH/SYSTEM MODULE in zshmodules(1)).  Warning:  Use  of  sysread
	      and  syswrite is not recommended, use zpty -r and zpty -w unless
	      you know exactly what you are doing.

       zpty -d [ name ... ]
	      The second form, with the -d option, is used to delete  commands
	      previously  started,  by supplying a list of their names.	 If no
	      name is given, all commands are  deleted.	  Deleting  a  command
	      causes the HUP signal to be sent to the corresponding process.

       zpty -w [ -n ] name [ string ... ]
	      The  -w option can be used to send the to command name the given
	      strings as input (separated by spaces).  If the -n option is not
	      given, a newline is added at the end.

	      If  no  string  is provided, the standard input is copied to the
	      pseudo-terminal; this may stop before copying the full input  if
	      the pseudo-terminal is non-blocking.

	      Note  that the command under the pseudo-terminal sees this input
	      as if it were typed, so beware when sending special  tty	driver
	      characters such as word-erase, line-kill, and end-of-file.

       zpty -r [ -mt ] name [ param [ pattern ] ]
	      The  -r  option  can  be	used to read the output of the command
	      name.  With only a name argument, the output read is  copied  to
	      the  standard  output.  Unless the pseudo-terminal is non-block‐
	      ing, copying continues until the command under the pseudo-termi‐
	      nal  exits; when non-blocking, only as much output as is immedi‐
	      ately available is copied.  The return status  is	 zero  if  any
	      output is copied.

	      When  also  given a param argument, at most one line is read and
	      stored in the parameter named param.  Less than a full line  may
	      be read if the pseudo-terminal is non-blocking.  The return sta‐
	      tus is zero if at least one character is stored in param.

	      If a pattern is given as well, output is read  until  the	 whole
	      string  read matches the pattern, even in the non-blocking case.
	      The return status is zero if the string read  matches  the  pat‐
	      tern,  or	 if  the command has exited but at least one character
	      could still be read.  If the option -m is	 present,  the	return
	      status is zero only if the pattern matches.  As of this writing,
	      a maximum of one megabyte of output can be consumed this way; if
	      a full megabyte is read without matching the pattern, the return
	      status is non-zero.

	      In all cases, the return status is non-zero if nothing could  be
	      read, and is 2 if this is because the command has finished.

	      If  the  -r  option  is  combined with the -t option, zpty tests
	      whether output is available before trying to read.  If no output
	      is  available, zpty immediately returns the status 1.  When used
	      with a pattern, the behaviour on a failed	 poll  is  similar  to
	      when  the	 command  has  exited:	the return value is zero if at
	      least one character could still be  read	even  if  the  pattern
	      failed to match.

       zpty -t name
	      The  -t option without the -r option can be used to test whether
	      the command name is still running.  It returns a zero status  if
	      the command is running and a non-zero value otherwise.

       zpty [ -L ]
	      The  last	 form, without any arguments, is used to list the com‐
	      mands currently defined.	If the -L option  is  given,  this  is
	      done in the form of calls to the zpty builtin.

THE ZSH/ZSELECT MODULE
       The zsh/zselect module makes available one builtin command:

       zselect [ -rwe ] [ -t timeout ] [ -a array ] [ -A assoc ] [ fd ... ]
	      The  zselect builtin is a front-end to the `select' system call,
	      which blocks until a file descriptor is  ready  for  reading  or
	      writing,	or  has	 an error condition, with an optional timeout.
	      If this is not available on your system, the command  prints  an
	      error  message and returns status 2 (normal errors return status
	      1).  For more information, see your  systems  documentation  for
	      select(3).   Note	 there is no connection with the shell builtin
	      of the same name.

	      Arguments	 and  options  may  be	intermingled  in  any	order.
	      Non-option arguments are file descriptors, which must be decimal
	      integers.	 By default, file descriptors are  to  be  tested  for
	      reading,	i.e.  zselect will return when data is available to be
	      read from the file descriptor, or more precisely,	 when  a  read
	      operation	 from the file descriptor will not block.  After a -r,
	      -w and -e, the given file descriptors are to be tested for read‐
	      ing,  writing,  or error conditions.  These options and an arbi‐
	      trary list of file descriptors may be given in any order.

	      (The presence of an `error condition' is not well defined in the
	      documentation  for  many	implementations	 of  the select system
	      call.  According to recent versions of the POSIX	specification,
	      it  is really an exception condition, of which the only standard
	      example is out-of-band data received on a socket.	 So zsh	 users
	      are unlikely to find the -e option useful.)

	      The  option  `-t timeout' specifies a timeout in hundredths of a
	      second.  This may be zero, in which case	the  file  descriptors
	      will  simply  be polled and zselect will return immediately.  It
	      is possible to call zselect  with	 no  file  descriptors	and  a
	      non-zero	timeout	 for  use  as  a finer-grained replacement for
	      `sleep'; note, however, the return status	 is  always  1	for  a
	      timeout.

	      The  option  `-a	array'	indicates  that array should be set to
	      indicate the file descriptor(s) which are ready.	If the	option
	      is  not  given,  the  array reply will be used for this purpose.
	      The array will contain a string similar  to  the	arguments  for
	      zselect.	For example,

		     zselect -t 0 -r 0 -w 1

	      might return immediately with status 0 and $reply containing `-r
	      0 -w 1' to show that both file descriptors  are  ready  for  the
	      requested operations.

	      The option `-A assoc' indicates that the associative array assoc
	      should be set to	indicate  the  file  descriptor(s)  which  are
	      ready.   This  option overrides the option -a, nor will reply be
	      modified.	 The keys of assoc are the file descriptors,  and  the
	      corresponding values are any of the characters `rwe' to indicate
	      the condition.

	      The command returns status 0 if some file descriptors are	 ready
	      for  reading.  If the operation timed out, or a timeout of 0 was
	      given and no file descriptors were ready, or there was an error,
	      it  returns status 1 and the array will not be set (nor modified
	      in any way).  If there was an error in the select operation  the
	      appropriate error message is printed.

THE ZSH/ZUTIL MODULE
       The zsh/zutil module only adds some builtins:

       zstyle [ -L [ pattern [ style ] ] ]
       zstyle [ -e | - | -- ] pattern style string ...
       zstyle -d [ pattern [ style ... ] ]
       zstyle -g name [ pattern [ style ] ]
       zstyle -{a|b|s} context style name [ sep ]
       zstyle -{T|t} context style [ string ... ]
       zstyle -m context style pattern
	      This  builtin  command  is  used	to  define  and lookup styles.
	      Styles are pairs of names and values, where the  values  consist
	      of  any  number  of strings.  They are stored together with pat‐
	      terns and lookup is done by giving a string,  called  the	 `con‐
	      text', which is compared to the patterns.	 The definition stored
	      for the first matching pattern will be returned.

	      For ordering of comparisons, patterns  are  searched  from  most
	      specific	to  least specific, and patterns that are equally spe‐
	      cific keep the order in which they were defined.	A  pattern  is
	      considered  to be more specific than another if it contains more
	      components (substrings separated by colons) or if	 the  patterns
	      for  the	components are more specific, where simple strings are
	      considered to be more specific than patterns  and	 complex  pat‐
	      terns are considered to be more specific than the pattern `*'.

	      The  first  form	(without  arguments)  lists  the  definitions.
	      Styles are shown in alphabetic order and patterns are  shown  in
	      the order zstyle will test them.

	      If  the -L option is given, listing is done in the form of calls
	      to zstyle.  The optional first argument is a pattern which  will
	      be  matched  against  the string supplied as the pattern for the
	      context; note that this means, for example, `zstyle -L ":comple‐
	      tion:*"'	will  match  any  supplied pattern beginning `:comple‐
	      tion:', not just ":completion:*":	 use ":completion:\*" to match
	      that.   The optional second argument limits the output to a spe‐
	      cific style (not a pattern).  -L	is  not	 compatible  with  any
	      other options.

	      The other forms are the following:

	      zstyle [ - | -- | -e ] pattern style string ...
		     Defines  the given style for the pattern with the strings
		     as the value.  If the -e option  is  given,  the  strings
		     will  be  concatenated  (separated	 by  spaces)  and  the
		     resulting string will be evaluated (in the same way as it
		     is	 done  by  the eval builtin command) when the style is
		     looked up.	 In this case the parameter  `reply'  must  be
		     assigned  to  set	the strings returned after the evalua‐
		     tion.  Before evaluating the value, reply is  unset,  and
		     if	 it  is still unset after the evaluation, the style is
		     treated as if it were not set.

	      zstyle -d [ pattern [ style ... ] ]
		     Delete style definitions. Without arguments  all  defini‐
		     tions  are	 deleted,  with	 a pattern all definitions for
		     that pattern are deleted and if  any  styles  are	given,
		     then only those styles are deleted for the pattern.

	      zstyle -g name [ pattern [ style ] ]
		     Retrieve a style definition. The name is used as the name
		     of an array in which the results are stored. Without  any
		     further  arguments,  all  patterns	 defined are returned.
		     With a pattern the styles defined for  that  pattern  are
		     returned  and  with both a pattern and a style, the value
		     strings of that combination is returned.

	      The other forms can be used to look up or test patterns.

	      zstyle -s context style name [ sep ]
		     The parameter name is set	to  the	 value	of  the	 style
		     interpreted  as  a string.	 If the value contains several
		     strings they are concatenated with spaces	(or  with  the
		     sep string if that is given) between them.

	      zstyle -b context style name
		     The  value	 is  stored  in name as a boolean, i.e. as the
		     string `yes' if the value has only one  string  and  that
		     string is equal to one of `yes', `true', `on', or `1'. If
		     the value is any  other  string  or  has  more  than  one
		     string, the parameter is set to `no'.

	      zstyle -a context style name
		     The  value	 is  stored  in	 name  as an array. If name is
		     declared as an associative array,	the first, third, etc.
		     strings  are  used	 as the keys and the other strings are
		     used as the values.

	      zstyle -t context style [ string ... ]
	      zstyle -T context style [ string ... ]
		     Test the value of	a  style,  i.e.	 the  -t  option  only
		     returns  a	 status	 (sets	$?).   Without	any string the
		     return status is zero if the  style  is  defined  for  at
		     least  one	 matching  pattern, has only one string in its
		     value, and that is equal to one of `true', `yes', `on' or
		     `1'.  If  any strings are given the status is zero if and
		     only if at least one of the strings is equal to at	 least
		     one  of the strings in the value. If the style is defined
		     but doesn't match, the return status is 1. If  the	 style
		     is not defined, the status is 2.

		     The  -T option tests the values of the style like -t, but
		     it returns status zero (rather than 2) if	the  style  is
		     not defined for any matching pattern.

	      zstyle -m context style pattern
		     Match a value. Returns status zero if the pattern matches
		     at least one of the strings in the value.

       zformat -f param format spec ...
       zformat -a array sep spec ...
	      This builtin provides two different  forms  of  formatting.  The
	      first form is selected with the -f option. In this case the for‐
	      mat string will be modified by replacing sequences starting with
	      a	 percent  sign	in  it with strings from the specs.  Each spec
	      should be of the	form  `char:string'  which  will  cause	 every
	      appearance  of  the sequence `%char' in format to be replaced by
	      the string.  The `%' sequence may also contain optional  minimum
	      and  maximum  field width specifications between the `%' and the
	      `char' in the form `%min.maxc', i.e. the minimum field width  is
	      given first and if the maximum field width is used, it has to be
	      preceded by a dot.  Specifying a minimum field width  makes  the
	      result  be  padded  with	spaces	to  the right if the string is
	      shorter than the requested width.	 Padding to the	 left  can  be
	      achieved by giving a negative minimum field width.  If a maximum
	      field width is specified, the string  will  be  truncated	 after
	      that  many  characters.	After  all `%' sequences for the given
	      specs have been processed, the resulting string is stored in the
	      parameter param.

	      The  %-escapes  also  understand ternary expressions in the form
	      used by prompts.	The % is followed by a `(' and then  an	 ordi‐
	      nary  format  specifier character as described above.  There may
	      be a set of digits either before or after the `('; these specify
	      a	 test  number,	which  defaults to zero.  Negative numbers are
	      also allowed.  An arbitrary delimiter character follows the for‐
	      mat  specifier, which is followed by a piece of `true' text, the
	      delimiter character again, a piece of `false' text, and a	 clos‐
	      ing  parenthesis.	  The complete expression (without the digits)
	      thus looks like `%(X.text1.text2)', except that the `.'  charac‐
	      ter  is  arbitrary.  The value given for the format specifier in
	      the char:string  expressions  is	evaluated  as  a  mathematical
	      expression,  and compared with the test number.  If they are the
	      same, text1 is output, else text2 is output.  A parenthesis  may
	      be escaped in text2 as %).  Either of text1 or text2 may contain
	      nested %-escapes.

	      For example:

		     zformat -f REPLY "The answer is '%3(c.yes.no)'." c:3

	      outputs "The answer is 'yes'." to REPLY since the value for  the
	      format specifier c is 3, agreeing with the digit argument to the
	      ternary expression.

	      The second form, using the -a option, can be used	 for  aligning
	      strings.	 Here,	the  specs  are of the form `left:right' where
	      `left' and `right' are arbitrary	strings.   These  strings  are
	      modified	by  replacing the colons by the sep string and padding
	      the left strings with spaces  to	the  right  so	that  the  sep
	      strings  in  the result (and hence the right strings after them)
	      are all aligned if the strings are  printed  below  each	other.
	      All  strings  without a colon are left unchanged and all strings
	      with an empty right string have the trailing colon removed.   In
	      both  cases the lengths of the strings are not used to determine
	      how the other strings are to be aligned.	The resulting  strings
	      are stored in the array.

       zregexparse
	      This implements some internals of the _regex_arguments function.

       zparseopts [ -D -K -M -E ] [ -a array ] [ -A assoc ] [ - ] spec ...
	      This  builtin  simplifies	 the  parsing of options in positional
	      parameters, i.e. the set of arguments given by  $*.   Each  spec
	      describes	 one option and must be of the form `opt[=array]'.  If
	      an option described by opt is found in the positional parameters
	      it is copied into the array specified with the -a option; if the
	      optional `=array' is given,  it  is  instead  copied  into  that
	      array,  which  should be declared as a normal array and never as
	      an associative array.

	      Note that it is an error to give any spec	 without  an  `=array'
	      unless one of the -a or -A options is used.

	      Unless the -E option is given, parsing stops at the first string
	      that isn't described by one of the specs.	 Even with -E, parsing
	      always stops at a positional parameter equal to `-' or `--'.

	      The  opt	description  must be one of the following.  Any of the
	      special characters can appear in the option name provided it  is
	      preceded by a backslash.

	      name
	      name+  The  name	is  the name of the option without the leading
		     `-'.  To specify a GNU-style  long	 option,  one  of  the
		     usual two leading `-' must be included in name; for exam‐
		     ple, a `--file'  option  is  represented  by  a  name  of
		     `-file'.

		     If	 a  `+'	 appears after name, the option is appended to
		     array each time it is found in the positional parameters;
		     without the `+' only the last occurrence of the option is
		     preserved.

		     If one of these forms is used, the option takes no	 argu‐
		     ment,  so	parsing stops if the next positional parameter
		     does not also begin with `-' (unless  the	-E  option  is
		     used).

	      name:
	      name:-
	      name:: If one or two colons are given, the option takes an argu‐
		     ment; with one colon, the argument is mandatory and  with
		     two  colons  it is optional.  The argument is appended to
		     the array after the option itself.

		     An optional argument is put into the same	array  element
		     as the option name (note that this makes empty strings as
		     arguments indistinguishable).  A  mandatory  argument  is
		     added as a separate element unless the `:-' form is used,
		     in which case the argument is put into the same element.

		     A `+' as described above may appear between the name  and
		     the first colon.

	      The  options of zparseopts itself cannot be stacked because, for
	      example, the stack `-DEK' is indistinguishable from a  spec  for
	      the  GNU-style  long  option `--DEK'.  The options of zparseopts
	      itself are:

	      -a array
		     As described above, this names the default array in which
		     to store the recognised options.

	      -A assoc
		     If	 this  is given, the options and their values are also
		     put into an associative array with the  option  names  as
		     keys and the arguments (if any) as the values.

	      -D     If	 this  option  is given, all options found are removed
		     from the positional parameters of the  calling  shell  or
		     shell function, up to but not including any not described
		     by the  specs.   This  is	similar	 to  using  the	 shift
		     builtin.

	      -K     With this option, the arrays specified with the -a option
		     and with the `=array' forms are kept unchanged when  none
		     of	 the  specs  for  them	is used.  Otherwise the entire
		     array is replaced when any of the specs is	 used.	 Indi‐
		     vidual  elements of associative arrays specified with the
		     -A option are preserved by -K.  This allows assignment of
		     default values to arrays before calling zparseopts.

	      -M     This  changes  the	 assignment  rules  to implement a map
		     among equivalent option names.   If  any  spec  uses  the
		     `=array'  form,  the  string  array is interpreted as the
		     name of another spec, which is used to  choose  where  to
		     store  the values.	 If no other spec is found, the values
		     are stored as usual.  This changes only the way the  val‐
		     ues  are stored, not the way $* is parsed, so results may
		     be unpredictable if the `name+' specifier is used	incon‐
		     sistently.

	      -E     This  changes  the parsing rules to not stop at the first
		     string that isn't described by one of the specs.  It  can
		     be used to test for or (if used together with -D) extract
		     options and their arguments, ignoring all	other  options
		     and arguments that may be in the positional parameters.

	      For example,

		     set -- -a -bx -c y -cz baz -cend
		     zparseopts a=foo b:=bar c+:=bar

	      will have the effect of

		     foo=(-a)
		     bar=(-b x -c y -c z)

	      The arguments from `baz' on will not be used.

	      As an example for the -E option, consider:

		     set -- -a x -b y -c z arg1 arg2
		     zparseopts -E -D b:=bar

	      will have the effect of

		     bar=(-b y)
		     set -- -a x -c z arg1 arg2

	      I.e.,  the  option -b and its arguments are taken from the posi‐
	      tional parameters and put into the array bar.

	      The -M option can be used like this:

		     set -- -a -bx -c y -cz baz -cend
		     zparseopts -A bar -M a=foo b+: c:=b

	      to have the effect of

		     foo=(-a)
		     bar=(-a '' -b xyz)

zsh 5.4.2			August 27, 2017			 ZSHMODULES(1)
[top]

List of man pages available for Kali

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net