pem man page on IRIX

Man page or keyword search:  
man Server   31559 pages
apropos Keyword Search (all sections)
Output format
IRIX logo
[printable version]

     /xlv3/openssl/0.9.7e-sgipl1/work/0.9.7e-sgipl1/openssl-
     0.9.7e/doc/crypto

     Page 1					    (printed 10/20/05)

     pem(3)		   21/Mar/2004 (0.9.7e)			pem(3)

     NAME
	  PEM - PEM routines

     SYNOPSIS
	   #include <openssl/pem.h>

	   EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
						  pem_password_cb *cb, void *u);

	   EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
						  pem_password_cb *cb, void *u);

	   int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
						  unsigned char *kstr, int klen,
						  pem_password_cb *cb, void *u);

	   int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
						  unsigned char *kstr, int klen,
						  pem_password_cb *cb, void *u);

	   int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
						  char *kstr, int klen,
						  pem_password_cb *cb, void *u);

	   int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
						  char *kstr, int klen,
						  pem_password_cb *cb, void *u);

	   int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
						  char *kstr, int klen,
						  pem_password_cb *cb, void *u);

	   int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
						  char *kstr, int klen,
						  pem_password_cb *cb, void *u);

	   EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
						  pem_password_cb *cb, void *u);

	   EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
						  pem_password_cb *cb, void *u);

	   int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
	   int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);

	   RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
						  pem_password_cb *cb, void *u);

	   RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
						  pem_password_cb *cb, void *u);

     Page 1					    (printed 10/20/05)

     pem(3)		   21/Mar/2004 (0.9.7e)			pem(3)

	   int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
						  unsigned char *kstr, int klen,
						  pem_password_cb *cb, void *u);

	   int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
						  unsigned char *kstr, int klen,
						  pem_password_cb *cb, void *u);

	   RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
						  pem_password_cb *cb, void *u);

	   RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
						  pem_password_cb *cb, void *u);

	   int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);

	   int PEM_write_RSAPublicKey(FILE *fp, RSA *x);

	   RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
						  pem_password_cb *cb, void *u);

	   RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
						  pem_password_cb *cb, void *u);

	   int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);

	   int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);

	   DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
						  pem_password_cb *cb, void *u);

	   DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
						  pem_password_cb *cb, void *u);

	   int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
						  unsigned char *kstr, int klen,
						  pem_password_cb *cb, void *u);

	   int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
						  unsigned char *kstr, int klen,
						  pem_password_cb *cb, void *u);

	   DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
						  pem_password_cb *cb, void *u);

	   DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
						  pem_password_cb *cb, void *u);

	   int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);

	   int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);

     Page 2					    (printed 10/20/05)

     pem(3)		   21/Mar/2004 (0.9.7e)			pem(3)

	   DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);

	   DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);

	   int PEM_write_bio_DSAparams(BIO *bp, DSA *x);

	   int PEM_write_DSAparams(FILE *fp, DSA *x);

	   DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);

	   DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);

	   int PEM_write_bio_DHparams(BIO *bp, DH *x);

	   int PEM_write_DHparams(FILE *fp, DH *x);

	   X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);

	   X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);

	   int PEM_write_bio_X509(BIO *bp, X509 *x);

	   int PEM_write_X509(FILE *fp, X509 *x);

	   X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);

	   X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);

	   int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);

	   int PEM_write_X509_AUX(FILE *fp, X509 *x);

	   X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
						  pem_password_cb *cb, void *u);

	   X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
						  pem_password_cb *cb, void *u);

	   int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);

	   int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);

	   int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);

	   int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);

	   X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
						  pem_password_cb *cb, void *u);
	   X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
						  pem_password_cb *cb, void *u);
	   int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
	   int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);

     Page 3					    (printed 10/20/05)

     pem(3)		   21/Mar/2004 (0.9.7e)			pem(3)

	   PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);

	   PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);

	   int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);

	   int PEM_write_PKCS7(FILE *fp, PKCS7 *x);

	   NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp,
							  NETSCAPE_CERT_SEQUENCE **x,
							  pem_password_cb *cb, void *u);

	   NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp,
							  NETSCAPE_CERT_SEQUENCE **x,
							  pem_password_cb *cb, void *u);

	   int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x);

	   int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x);

     DESCRIPTION
	  The PEM functions read or write structures in PEM format. In
	  this sense PEM format is simply base64 encoded data
	  surrounded by header lines.

	  For more details about the meaning of arguments see the PEM
	  FUNCTION ARGUMENTS section.

	  Each operation has four functions associated with it. For
	  clarity the term "foobar functions" will be used to
	  collectively refer to the PEM_read_bio_foobar(),
	  PEM_read_foobar(), PEM_write_bio_foobar() and
	  PEM_write_foobar() functions.

	  The PrivateKey functions read or write a private key in PEM
	  format using an EVP_PKEY structure. The write routines use
	  "traditional" private key format and can handle both RSA and
	  DSA private keys. The read functions can additionally
	  transparently handle PKCS#8 format encrypted and unencrypted
	  keys too.

	  PEM_write_bio_PKCS8PrivateKey() and
	  PEM_write_PKCS8PrivateKey() write a private key in an
	  EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo format
	  using PKCS#5 v2.0 password based encryption algorithms. The
	  cipher argument specifies the encryption algoritm to use:
	  unlike all other PEM routines the encryption is applied at
	  the PKCS#8 level and not in the PEM headers. If cipher is
	  NULL then no encryption is used and a PKCS#8 PrivateKeyInfo
	  structure is used instead.

     Page 4					    (printed 10/20/05)

     pem(3)		   21/Mar/2004 (0.9.7e)			pem(3)

	  PEM_write_bio_PKCS8PrivateKey_nid() and
	  PEM_write_PKCS8PrivateKey_nid() also write out a private key
	  as a PKCS#8 EncryptedPrivateKeyInfo however it uses PKCS#5
	  v1.5 or PKCS#12 encryption algorithms instead. The algorithm
	  to use is specified in the nid parameter and should be the
	  NID of the corresponding OBJECT IDENTIFIER (see NOTES
	  section).

	  The PUBKEY functions process a public key using an EVP_PKEY
	  structure. The public key is encoded as a
	  SubjectPublicKeyInfo structure.

	  The RSAPrivateKey functions process an RSA private key using
	  an RSA structure. It handles the same formats as the
	  PrivateKey functions but an error occurs if the private key
	  is not RSA.

	  The RSAPublicKey functions process an RSA public key using
	  an RSA structure. The public key is encoded using a PKCS#1
	  RSAPublicKey structure.

	  The RSA_PUBKEY functions also process an RSA public key
	  using an RSA structure. However the public key is encoded
	  using a SubjectPublicKeyInfo structure and an error occurs
	  if the public key is not RSA.

	  The DSAPrivateKey functions process a DSA private key using
	  a DSA structure. It handles the same formats as the
	  PrivateKey functions but an error occurs if the private key
	  is not DSA.

	  The DSA_PUBKEY functions process a DSA public key using a
	  DSA structure. The public key is encoded using a
	  SubjectPublicKeyInfo structure and an error occurs if the
	  public key is not DSA.

	  The DSAparams functions process DSA parameters using a DSA
	  structure. The parameters are encoded using a foobar
	  structure.

	  The DHparams functions process DH parameters using a DH
	  structure. The parameters are encoded using a PKCS#3
	  DHparameter structure.

	  The X509 functions process an X509 certificate using an X509
	  structure. They will also process a trusted X509 certificate
	  but any trust settings are discarded.

	  The X509_AUX functions process a trusted X509 certificate
	  using an X509 structure.

	  The X509_REQ and X509_REQ_NEW functions process a PKCS#10

     Page 5					    (printed 10/20/05)

     pem(3)		   21/Mar/2004 (0.9.7e)			pem(3)

	  certificate request using an X509_REQ structure. The
	  X509_REQ write functions use CERTIFICATE REQUEST in the
	  header whereas the X509_REQ_NEW functions use NEW
	  CERTIFICATE REQUEST (as required by some CAs). The X509_REQ
	  read functions will handle either form so there are no
	  X509_REQ_NEW read functions.

	  The X509_CRL functions process an X509 CRL using an X509_CRL
	  structure.

	  The PKCS7 functions process a PKCS#7 ContentInfo using a
	  PKCS7 structure.

	  The NETSCAPE_CERT_SEQUENCE functions process a Netscape
	  Certificate Sequence using a NETSCAPE_CERT_SEQUENCE
	  structure.

     PEM FUNCTION ARGUMENTS
	  The PEM functions have many common arguments.

	  The bp BIO parameter (if present) specifies the BIO to read
	  from or write to.

	  The fp FILE parameter (if present) specifies the FILE
	  pointer to read from or write to.

	  The PEM read functions all take an argument TYPE **x and
	  return a TYPE * pointer. Where TYPE is whatever structure
	  the function uses. If x is NULL then the parameter is
	  ignored. If x is not NULL but *x is NULL then the structure
	  returned will be written to *x. If neither x nor *x is NULL
	  then an attempt is made to reuse the structure at *x (but
	  see BUGS and EXAMPLES sections).  Irrespective of the value
	  of x a pointer to the structure is always returned (or NULL
	  if an error occurred).

	  The PEM functions which write private keys take an enc
	  parameter which specifies the encryption algorithm to use,
	  encryption is done at the PEM level. If this parameter is
	  set to NULL then the private key is written in unencrypted
	  form.

	  The cb argument is the callback to use when querying for the
	  pass phrase used for encrypted PEM structures (normally only
	  private keys).

	  For the PEM write routines if the kstr parameter is not NULL
	  then klen bytes at kstr are used as the passphrase and cb is
	  ignored.

	  If the cb parameters is set to NULL and the u parameter is
	  not NULL then the u parameter is interpreted as a null

     Page 6					    (printed 10/20/05)

     pem(3)		   21/Mar/2004 (0.9.7e)			pem(3)

	  terminated string to use as the passphrase. If both cb and u
	  are NULL then the default callback routine is used which
	  will typically prompt for the passphrase on the current
	  terminal with echoing turned off.

	  The default passphrase callback is sometimes inappropriate
	  (for example in a GUI application) so an alternative can be
	  supplied. The callback routine has the following form:

	   int cb(char *buf, int size, int rwflag, void *u);

	  buf is the buffer to write the passphrase to. size is the
	  maximum length of the passphrase (i.e. the size of buf).
	  rwflag is a flag which is set to 0 when reading and 1 when
	  writing. A typical routine will ask the user to verify the
	  passphrase (for example by prompting for it twice) if rwflag
	  is 1. The u parameter has the same value as the u parameter
	  passed to the PEM routine. It allows arbitrary data to be
	  passed to the callback by the application (for example a
	  window handle in a GUI application). The callback must
	  return the number of characters in the passphrase or 0 if an
	  error occurred.

     EXAMPLES
	  Although the PEM routines take several arguments in almost
	  all applications most of them are set to 0 or NULL.

	  Read a certificate in PEM format from a BIO:

	   X509 *x;
	   x = PEM_read_bio_X509(bp, NULL, 0, NULL);
	   if (x == NULL)
		  {
		  /* Error */
		  }

	  Alternative method:

	   X509 *x = NULL;
	   if (!PEM_read_bio_X509(bp, &x, 0, NULL))
		  {
		  /* Error */
		  }

	  Write a certificate to a BIO:

	   if (!PEM_write_bio_X509(bp, x))
		  {
		  /* Error */
		  }

	  Write an unencrypted private key to a FILE pointer:

     Page 7					    (printed 10/20/05)

     pem(3)		   21/Mar/2004 (0.9.7e)			pem(3)

	   if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL))
		  {
		  /* Error */
		  }

	  Write a private key (using traditional format) to a BIO
	  using triple DES encryption, the pass phrase is prompted
	  for:

	   if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
		  {
		  /* Error */
		  }

	  Write a private key (using PKCS#8 format) to a BIO using
	  triple DES encryption, using the pass phrase "hello":

	   if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello"))
		  {
		  /* Error */
		  }

	  Read a private key from a BIO using the pass phrase "hello":

	   key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello");
	   if (key == NULL)
		  {
		  /* Error */
		  }

	  Read a private key from a BIO using a pass phrase callback:

	   key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
	   if (key == NULL)
		  {
		  /* Error */
		  }

	  Skeleton pass phrase callback:

	   int pass_cb(char *buf, int size, int rwflag, void *u);
		  {
		  int len;
		  char *tmp;
		  /* We'd probably do something else if 'rwflag' is 1 */
		  printf("Enter pass phrase for \"%s\"\n", u);

		  /* get pass phrase, length 'len' into 'tmp' */
		  tmp = "hello";
		  len = strlen(tmp);

     Page 8					    (printed 10/20/05)

     pem(3)		   21/Mar/2004 (0.9.7e)			pem(3)

		  if (len <= 0) return 0;
		  /* if too long, truncate */
		  if (len > size) len = size;
		  memcpy(buf, tmp, len);
		  return len;
		  }

     NOTES
	  The old PrivateKey write routines are retained for
	  compatibility.  New applications should write private keys
	  using the PEM_write_bio_PKCS8PrivateKey() or
	  PEM_write_PKCS8PrivateKey() routines because they are more
	  secure (they use an iteration count of 2048 whereas the
	  traditional routines use a count of 1) unless compatibility
	  with older versions of OpenSSL is important.

	  The PrivateKey read routines can be used in all applications
	  because they handle all formats transparently.

	  A frequent cause of problems is attempting to use the PEM
	  routines like this:

	   X509 *x;
	   PEM_read_bio_X509(bp, &x, 0, NULL);

	  this is a bug because an attempt will be made to reuse the
	  data at x which is an uninitialised pointer.

     PEM ENCRYPTION FORMAT
	  This old PrivateKey routines use a non standard technique
	  for encryption.

	  The private key (or other data) takes the following form:

	   -----BEGIN RSA PRIVATE KEY-----
	   Proc-Type: 4,ENCRYPTED
	   DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89

	   ...base64 encoded data...
	   -----END RSA PRIVATE KEY-----

	  The line beginning DEK-Info contains two comma separated
	  pieces of information:  the encryption algorithm name as
	  used by EVP_get_cipherbyname() and an 8 byte salt encoded as
	  a set of hexadecimal digits.

	  After this is the base64 encoded encrypted data.

	  The encryption key is determined using EVP_bytestokey(),
	  using salt and an iteration count of 1. The IV used is the
	  value of salt and *not* the IV returned by EVP_bytestokey().

     Page 9					    (printed 10/20/05)

     pem(3)		   21/Mar/2004 (0.9.7e)			pem(3)

     BUGS
	  The PEM read routines in some versions of OpenSSL will not
	  correctly reuse an existing structure. Therefore the
	  following:

	   PEM_read_bio_X509(bp, &x, 0, NULL);

	  where x already contains a valid certificate, may not work,
	  whereas:

	   X509_free(x);
	   x = PEM_read_bio_X509(bp, NULL, 0, NULL);

	  is guaranteed to work.

     RETURN CODES
	  The read routines return either a pointer to the structure
	  read or NULL if an error occurred.

	  The write routines return 1 for success or 0 for failure.

     Page 10					    (printed 10/20/05)

[top]

List of man pages available for IRIX

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net