DSBTRD(1) LAPACK routine (version 3.2) DSBTRD(1)[top]NAMEDSBTRD - reduces a real symmetric band matrix A to symmetric tridiago‐ nal form T by an orthogonal similarity transformationSYNOPSISSUBROUTINE DSBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK, INFO ) CHARACTER UPLO, VECT INTEGER INFO, KD, LDAB, LDQ, N DOUBLE PRECISION AB( LDAB, * ), D( * ), E( * ), Q( LDQ, * ), WORK( * )PURPOSEDSBTRD reduces a real symmetric band matrix A to symmetric tridiagonal form T by an orthogonal similarity transformation: Q**T * A * Q = T.ARGUMENTSVECT (input) CHARACTER*1 = 'N': do not form Q; = 'V': form Q; = 'U': update a matrix X, by forming X*Q. UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. KD (input) INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0. AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j- kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). On exit, the diagonal elements of AB are overwritten by the diagonal elements of the tridiagonal matrix T; if KD > 0, the elements on the first superdiagonal (if UPLO = 'U') or the first subdiagonal (if UPLO = 'L') are overwritten by the off-diagonal elements of T; the rest of AB is overwrit‐ ten by values generated during the reduction. LDAB (input) INTEGER The leading dimension of the array AB. LDAB >= KD+1. D (output) DOUBLE PRECISION array, dimension (N) The diagonal elements of the tridiagonal matrix T. E (output) DOUBLE PRECISION array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix T: E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) On entry, if VECT = 'U', then Q must contain an N-by-N matrix X; if VECT = 'N' or 'V', then Q need not be set. On exit: if VECT = 'V', Q contains the N-by-N orthogonal matrix Q; if VECT = 'U', Q contains the product X*Q; if VECT = 'N', the array Q is not referenced. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. WORK (workspace) DOUBLE PRECISION array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO =, the i-th argument had an illegal value-iFURTHER DETAILSModified by Linda Kaufman, Bell Labs. LAPACK routine (version 3.2) November 2008 DSBTRD(1)

List of man pages available for

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]

Polar

Member of Polar

Based on Fawad Halim's script.

....................................................................

Vote for polarhome |