DGGHRD(1) LAPACK routine (version 3.2) DGGHRD(1)[top]NAMEDGGHRD - reduces a pair of real matrices (A,B) to generalized upper Hessenberg form using orthogonal transformations, where A is a general matrix and B is upper triangularSYNOPSISSUBROUTINE DGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z, LDZ, INFO ) CHARACTER COMPQ, COMPZ INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ, * )PURPOSEDGGHRD reduces a pair of real matrices (A,B) to generalized upper Hes‐ senberg form using orthogonal transformations, where A is a general matrix and B is upper triangular. The form of the generalized eigen‐ value problem is A*x = lambda*B*x, and B is typically made upper triangular by computing its QR factoriza‐ tion and moving the orthogonal matrix Q to the left side of the equa‐ tion. This subroutine simultaneously reduces A to a Hessenberg matrix H: Q**T*A*Z = H and transforms B to another upper triangular matrix T: Q**T*B*Z = T in order to reduce the problem to its standard form H*y = lambda*T*y where y = Z**T*x. The orthogonal matrices Q and Z are determined as products of Givens rotations. They may either be formed explicitly, or they may be post‐ multiplied into input matrices Q1 and Z1, so that Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T If Q1 is the orthogonal matrix from the QR factorization of B in the original equation A*x = lambda*B*x, then DGGHRD reduces the original problem to generalized Hessenberg form.ARGUMENTSCOMPQ (input) CHARACTER*1 = 'N': do not compute Q; = 'I': Q is initialized to the unit matrix, and the orthogonal matrix Q is returned; = 'V': Q must contain an orthogonal matrix Q1 on entry, and the product Q1*Q is returned. COMPZ (input) CHARACTER*1 = 'N': do not compute Z; = 'I': Z is initialized to the unit matrix, and the orthogonal matrix Z is returned; = 'V': Z must contain an orthogonal matrix Z1 on entry, and the product Z1*Z is returned. N (input) INTEGER The order of the matrices A and B. N >= 0. ILO (input) INTEGER IHI (input) INTEGER ILO and IHI mark the rows and columns of A which are to be reduced. It is assumed that A is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to SGGBAL; other‐ wise they should be set to 1 and N respectively. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. A (input/output) DOUBLE PRECISION array, dimension (LDA, N) On entry, the N-by-N general matrix to be reduced. On exit, the upper triangle and the first subdiagonal of A are overwrit‐ ten with the upper Hessenberg matrix H, and the rest is set to zero. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input/output) DOUBLE PRECISION array, dimension (LDB, N) On entry, the N-by-N upper triangular matrix B. On exit, the upper triangular matrix T = Q**T B Z. The elements below the diagonal are set to zero. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N) On entry, if COMPQ = 'V', the orthogonal matrix Q1, typically from the QR factorization of B. On exit, if COMPQ='I', the orthogonal matrix Q, and if COMPQ = 'V', the product Q1*Q. Not referenced if COMPQ='N'. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N) On entry, if COMPZ = 'V', the orthogonal matrix Z1. On exit, if COMPZ='I', the orthogonal matrix Z, and if COMPZ = 'V', the product Z1*Z. Not referenced if COMPZ='N'. LDZ (input) INTEGER The leading dimension of the array Z. LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. INFO (output) INTEGER = 0: successful exit. < 0: if INFO =, the i-th argument had an illegal value.-iFURTHER DETAILSThis routine reduces A to Hessenberg and B to triangular form by an unblocked reduction, as described in _Matrix_Computations_, by Golub and Van Loan (Johns Hopkins Press.) LAPACK routine (version 3.2) November 2008 DGGHRD(1)

List of man pages available for

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]

Polar

Member of Polar

Based on Fawad Halim's script.

....................................................................

Vote for polarhome |