CGGBAL(1) LAPACK routine (version 3.2) CGGBAL(1)[top]NAMECGGBAL - balances a pair of general complex matrices (A,B)SYNOPSISSUBROUTINE CGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE, WORK, INFO ) CHARACTER JOB INTEGER IHI, ILO, INFO, LDA, LDB, N REAL LSCALE( * ), RSCALE( * ), WORK( * ) COMPLEX A( LDA, * ), B( LDB, * )PURPOSECGGBAL balances a pair of general complex matrices (A,B). This involves, first, permuting A and B by similarity transformations to isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N ele‐ ments on the diagonal; and second, applying a diagonal similarity transformation to rows and columns ILO to IHI to make the rows and col‐ umns as close in norm as possible. Both steps are optional. Balancing may reduce the 1-norm of the matrices, and improve the accuracy of the computed eigenvalues and/or eigenvectors in the generalized eigenvalue problem A*x = lambda*B*x.ARGUMENTSJOB (input) CHARACTER*1 Specifies the operations to be performed on A and B: = 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0 and RSCALE(I) = 1.0 for i=1,...,N; = 'P': permute only; = 'S': scale only; = 'B': both permute and scale. N (input) INTEGER The order of the matrices A and B. N >= 0. A (input/output) COMPLEX array, dimension (LDA,N) On entry, the input matrix A. On exit, A is overwritten by the balanced matrix. If JOB = 'N', A is not referenced. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input/output) COMPLEX array, dimension (LDB,N) On entry, the input matrix B. On exit, B is overwritten by the balanced matrix. If JOB = 'N', B is not referenced. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). ILO (output) INTEGER IHI (output) INTEGER ILO and IHI are set to integers such that on exit A(i,j) = 0 and B(i,j) = 0 if i > j and j = 1,...,ILO-1 or i = IHI+1,...,N. If JOB = 'N' or 'S', ILO = 1 and IHI = N. LSCALE (output) REAL array, dimension (N) Details of the permutations and scaling factors applied to the left side of A and B. If P(j) is the index of the row inter‐ changed with row j, and D(j) is the scaling factor applied to row j, then LSCALE(j) = P(j) for J = 1,...,ILO-1 = D(j) for J = ILO,...,IHI = P(j) for J = IHI+1,...,N. The order in which the interchanges are made is N to IHI+1, then 1 to ILO-1. RSCALE (output) REAL array, dimension (N) Details of the permutations and scaling factors applied to the right side of A and B. If P(j) is the index of the column interchanged with column j, and D(j) is the scaling factor applied to column j, then RSCALE(j) = P(j) for J = 1,...,ILO-1 = D(j) for J = ILO,...,IHI = P(j) for J = IHI+1,...,N. The order in which the interchanges are made is N to IHI+1, then 1 to ILO-1. WORK (workspace) REAL array, dimension (lwork) lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and at least 1 when JOB = 'N' or 'P'. INFO (output) INTEGER = 0: successful exit < 0: if INFO =, the i-th argument had an illegal value.-iFURTHER DETAILSSee R.C. WARD, Balancing the generalized eigenvalue problem, SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. LAPACK routine (version 3.2) November 2008 CGGBAL(1)

List of man pages available for

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]

Polar

Member of Polar

Based on Fawad Halim's script.

....................................................................

Vote for polarhome |