CGESVD(1) LAPACK driver routine (version 3.2) CGESVD(1)[top]NAMECGESVD - computes the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally computing the left and/or right singular vectorsSYNOPSISSUBROUTINE CGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, RWORK, INFO ) CHARACTER JOBU, JOBVT INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N REAL RWORK( * ), S( * ) COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ), WORK( * )PURPOSECGESVD computes the singular value decomposition (SVD) of a complex M- by-N matrix A, optionally computing the left and/or right singular vec‐ tors. The SVD is written A = U * SIGMA * conjugate-transpose(V) where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M unitary matrix, and V is an N-by-N unitary matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A. Note that the routine returns V**H, not V.ARGUMENTSJOBU (input) CHARACTER*1 Specifies options for computing all or part of the matrix U: = 'A': all M columns of U are returned in array U: = 'S': the first min(m,n) columns of U (the left singular vec‐ tors) are returned in the array U; = 'O': the first min(m,n) columns of U (the left singular vectors) are overwritten on the array A; = 'N': no columns of U (no left singular vectors) are computed. JOBVT (input) CHARACTER*1 Specifies options for computing all or part of the matrix V**H: = 'A': all N rows of V**H are returned in the array VT; = 'S': the first min(m,n) rows of V**H (the right singular vectors) are returned in the array VT; = 'O': the first min(m,n) rows of V**H (the right singular vectors) are over‐ written on the array A; = 'N': no rows of V**H (no right sin‐ gular vectors) are computed. JOBVT and JOBU cannot both be 'O'. M (input) INTEGER The number of rows of the input matrix A. M >= 0. N (input) INTEGER The number of columns of the input matrix A. N >= 0. A (input/output) COMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, if JOBU = 'O', A is overwritten with the first min(m,n) columns of U (the left sin‐ gular vectors, stored columnwise); if JOBVT = 'O', A is over‐ written with the first min(m,n) rows of V**H (the right singu‐ lar vectors, stored rowwise); if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A are destroyed. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). S (output) REAL array, dimension (min(M,N)) The singular values of A, sorted so that S(i) >= S(i+1). U (output) COMPLEX array, dimension (LDU,UCOL) (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'. If JOBU = 'A', U contains the M-by-M unitary matrix U; if JOBU = 'S', U contains the first min(m,n) columns of U (the left singular vectors, stored columnwise); if JOBU = 'N' or 'O', U is not referenced. LDU (input) INTEGER The leading dimension of the array U. LDU >= 1; if JOBU = 'S' or 'A', LDU >= M. VT (output) COMPLEX array, dimension (LDVT,N) If JOBVT = 'A', VT contains the N-by-N unitary matrix V**H; if JOBVT = 'S', VT contains the first min(m,n) rows of V**H (the right singular vectors, stored rowwise); if JOBVT = 'N' or 'O', VT is not referenced. LDVT (input) INTEGER The leading dimension of the array VT. LDVT >= 1; if JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N). WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= MAX(1,2*MIN(M,N)+MAX(M,N)). For good performance, LWORK should generally be larger. If LWORK =, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. RWORK (workspace) REAL array, dimension (5*min(M,N)) On exit, if INFO > 0, RWORK(1:MIN(M,N)-1) contains the uncon‐ verged superdiagonal elements of an upper bidiagonal matrix B whose diagonal is in S (not necessarily sorted). B satisfies A = U * B * VT, so it has the same singular values as A, and sin‐ gular vectors related by U and VT. INFO (output) INTEGER = 0: successful exit. < 0: if INFO =-1, the i-th argument had an illegal value. > 0: if CBDSQR did not converge, INFO specifies how many superdiagonals of an intermediate bidiagonal form B did not converge to zero. See the description of RWORK above for details. LAPACK driver routine (version 3November 2008 CGESVD(1)-i

List of man pages available for

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]

Polar

Member of Polar

Based on Fawad Halim's script.

....................................................................

Vote for polarhome |