/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * NB: these functions have been "upgraded", the deprecated versions (which * are compatibility wrappers using these functions) are in rsa_depr.c. - * Geoff */ #include #include #include "internal/cryptlib.h" #include #include "rsa_locl.h" static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value, BN_GENCB *cb); /* * NB: this wrapper would normally be placed in rsa_lib.c and the static * implementation would probably be in rsa_eay.c. Nonetheless, is kept here * so that we don't introduce a new linker dependency. Eg. any application * that wasn't previously linking object code related to key-generation won't * have to now just because key-generation is part of RSA_METHOD. */ int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) { if (rsa->meth->rsa_keygen != NULL) return rsa->meth->rsa_keygen(rsa, bits, e_value, cb); return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM, e_value, cb); } int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes, BIGNUM *e_value, BN_GENCB *cb) { /* multi-prime is only supported with the builtin key generation */ if (rsa->meth->rsa_multi_prime_keygen != NULL) return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes, e_value, cb); return rsa_builtin_keygen(rsa, bits, primes, e_value, cb); } static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value, BN_GENCB *cb) { BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime; int ok = -1, n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0; int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0; RSA_PRIME_INFO *pinfo = NULL; STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL; BN_CTX *ctx = NULL; BN_ULONG bitst = 0; /* * From Github pull request #4241: * * We are in disagreement on how to handle security trade-off, in other * words: * * mechanical-check-for-maximum-of-16-prime-factors vs. * limiting-number-depending-on-length-less-factors-for-shorter-keys. */ /* * When generating ridiculously small keys, we can get stuck * continually regenerating the same prime values. */ if (bits < 16) { ok = 0; /* we set our own err */ RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_SIZE_TOO_SMALL); goto err; } if (primes < RSA_DEFAULT_PRIME_NUM || primes > RSA_MAX_PRIME_NUM || bits <= primes) { RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_PRIME_NUM_INVALID); goto err; } ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); r0 = BN_CTX_get(ctx); r1 = BN_CTX_get(ctx); r2 = BN_CTX_get(ctx); if (r2 == NULL) goto err; /* divide bits into 'primes' pieces evenly */ quo = bits / primes; rmd = bits % primes; if (primes > RSA_DEFAULT_PRIME_NUM && quo < RSA_MIN_PRIME_SIZE) { /* * this means primes are too many for the key bits. * * This only affects multi-prime keys. For normal RSA, * it's limited above (bits >= 16, hence each prime >= 8). * * This is done in this way because the original normal * RSA's behavior should not alter at least in OpenSSL 1.1.1. */ RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_PRIME_NUM_INVALID); goto err; } for (i = 0; i < primes; i++) bitsr[i] = (i < rmd) ? quo + 1 : quo; /* We need the RSA components non-NULL */ if (!rsa->n && ((rsa->n = BN_new()) == NULL)) goto err; if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL)) goto err; if (!rsa->e && ((rsa->e = BN_new()) == NULL)) goto err; if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL)) goto err; if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL)) goto err; if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL)) goto err; if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL)) goto err; if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL)) goto err; /* initialize multi-prime components */ if (primes > RSA_DEFAULT_PRIME_NUM) { rsa->version = RSA_ASN1_VERSION_MULTI; prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2); if (prime_infos == NULL) goto err; if (rsa->prime_infos != NULL) { /* could this happen? */ sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, rsa_multip_info_free); } rsa->prime_infos = prime_infos; /* prime_info from 2 to |primes| -1 */ for (i = 2; i < primes; i++) { pinfo = rsa_multip_info_new(); if (pinfo == NULL) goto err; (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo); } } if (BN_copy(rsa->e, e_value) == NULL) goto err; /* generate p, q and other primes (if any) */ for (i = 0; i < primes; i++) { adj = 0; retries = 0; if (i == 0) { prime = rsa->p; } else if (i == 1) { prime = rsa->q; } else { pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); prime = pinfo->r; } for (;;) { redo: if (!BN_generate_prime_ex(prime, bitsr[i] + adj, 0, NULL, NULL, cb)) goto err; /* * prime should not be equal to p, q, r_3... * (those primes prior to this one) */ { int j; for (j = 0; j < i; j++) { BIGNUM *prev_prime; if (j == 0) prev_prime = rsa->p; else if (j == 1) prev_prime = rsa->q; else prev_prime = sk_RSA_PRIME_INFO_value(prime_infos, j - 2)->r; if (!BN_cmp(prime, prev_prime)) { goto redo; } } } if (!BN_sub(r2, prime, BN_value_one())) goto err; if (!BN_gcd(r1, r2, rsa->e, ctx)) goto err; if (BN_is_one(r1)) break; if (!BN_GENCB_call(cb, 2, n++)) goto err; } bitse += bitsr[i]; /* calculate n immediately to see if it's sufficient */ if (i == 1) { /* we get at least 2 primes */ if (!BN_mul(r1, rsa->p, rsa->q, ctx)) goto err; } else if (i != 0) { /* modulus n = p * q * r_3 * r_4 ... */ if (!BN_mul(r1, rsa->n, prime, ctx)) goto err; } else { /* i == 0, do nothing */ if (!BN_GENCB_call(cb, 3, i)) goto err; continue; } /* * if |r1|, product of factors so far, is not as long as expected * (by checking the first 4 bits are less than 0x9 or greater than * 0xF). If so, re-generate the last prime. * * NOTE: This actually can't happen in two-prime case, because of * the way factors are generated. * * Besides, another consideration is, for multi-prime case, even the * length modulus is as long as expected, the modulus could start at * 0x8, which could be utilized to distinguish a multi-prime private * key by using the modulus in a certificate. This is also covered * by checking the length should not be less than 0x9. */ if (!BN_rshift(r2, r1, bitse - 4)) goto err; bitst = BN_get_word(r2); if (bitst < 0x9 || bitst > 0xF) { /* * For keys with more than 4 primes, we attempt longer factor to * meet length requirement. * * Otherwise, we just re-generate the prime with the same length. * * This strategy has the following goals: * * 1. 1024-bit factors are effcient when using 3072 and 4096-bit key * 2. stay the same logic with normal 2-prime key */ bitse -= bitsr[i]; if (!BN_GENCB_call(cb, 2, n++)) goto err; if (primes > 4) { if (bitst < 0x9) adj++; else adj--; } else if (retries == 4) { /* * re-generate all primes from scratch, mainly used * in 4 prime case to avoid long loop. Max retry times * is set to 4. */ i = -1; bitse = 0; continue; } retries++; goto redo; } /* save product of primes for further use, for multi-prime only */ if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL) goto err; if (BN_copy(rsa->n, r1) == NULL) goto err; if (!BN_GENCB_call(cb, 3, i)) goto err; } if (BN_cmp(rsa->p, rsa->q) < 0) { tmp = rsa->p; rsa->p = rsa->q; rsa->q = tmp; } /* calculate d */ /* p - 1 */ if (!BN_sub(r1, rsa->p, BN_value_one())) goto err; /* q - 1 */ if (!BN_sub(r2, rsa->q, BN_value_one())) goto err; /* (p - 1)(q - 1) */ if (!BN_mul(r0, r1, r2, ctx)) goto err; /* multi-prime */ for (i = 2; i < primes; i++) { pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); /* save r_i - 1 to pinfo->d temporarily */ if (!BN_sub(pinfo->d, pinfo->r, BN_value_one())) goto err; if (!BN_mul(r0, r0, pinfo->d, ctx)) goto err; } { BIGNUM *pr0 = BN_new(); if (pr0 == NULL) goto err; BN_with_flags(pr0, r0, BN_FLG_CONSTTIME); if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) { BN_free(pr0); goto err; /* d */ } /* We MUST free pr0 before any further use of r0 */ BN_free(pr0); } { BIGNUM *d = BN_new(); if (d == NULL) goto err; BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); /* calculate d mod (p-1) and d mod (q - 1) */ if (!BN_mod(rsa->dmp1, d, r1, ctx) || !BN_mod(rsa->dmq1, d, r2, ctx)) { BN_free(d); goto err; } /* calculate CRT exponents */ for (i = 2; i < primes; i++) { pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); /* pinfo->d == r_i - 1 */ if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) { BN_free(d); goto err; } } /* We MUST free d before any further use of rsa->d */ BN_free(d); } { BIGNUM *p = BN_new(); if (p == NULL) goto err; BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME); /* calculate inverse of q mod p */ if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) { BN_free(p); goto err; } /* calculate CRT coefficient for other primes */ for (i = 2; i < primes; i++) { pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME); if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) { BN_free(p); goto err; } } /* We MUST free p before any further use of rsa->p */ BN_free(p); } ok = 1; err: if (ok == -1) { RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, ERR_LIB_BN); ok = 0; } if (ctx != NULL) BN_CTX_end(ctx); BN_CTX_free(ctx); return ok; }