These functions are described in more detail in the PostgreSQL docs.
Note
All functions come without default aliases, so you must explicitly provide one. For example:
>>> SomeModel.objects.aggregate(arr=ArrayAgg('somefield'))
{'arr': [0, 1, 2]}
ArrayAgg
¶ArrayAgg
(expression, **extra)¶Returns a list of values, including nulls, concatenated into an array.
BitAnd
¶BitAnd
(expression, **extra)¶Returns an int
of the bitwise AND
of all non-null input values, or
None
if all values are null.
BitOr
¶BitOr
(expression, **extra)¶Returns an int
of the bitwise OR
of all non-null input values, or
None
if all values are null.
BoolAnd
¶BoolAnd
(expression, **extra)¶Returns True
, if all input values are true, None
if all values are
null or if there are no values, otherwise False
.
BoolOr
¶BoolOr
(expression, **extra)¶Returns True
if at least one input value is true, None
if all
values are null or if there are no values, otherwise False
.
JSONBAgg
¶JSONBAgg
(expressions, **extra)¶Returns the input values as a JSON
array. Requires PostgreSQL ≥ 9.5.
StringAgg
¶StringAgg
(expression, delimiter, distinct=False)¶Returns the input values concatenated into a string, separated by
the delimiter
string.
delimiter
¶Required argument. Needs to be a string.
distinct
¶An optional boolean argument that determines if concatenated values
will be distinct. Defaults to False
.
y
and x
¶The arguments y
and x
for all these functions can be the name of a
field or an expression returning a numeric data. Both are required.
Corr
¶Corr
(y, x)¶Returns the correlation coefficient as a float
, or None
if there
aren’t any matching rows.
CovarPop
¶CovarPop
(y, x, sample=False)¶Returns the population covariance as a float
, or None
if there
aren’t any matching rows.
Has one optional argument:
sample
¶By default CovarPop
returns the general population covariance.
However, if sample=True
, the return value will be the sample
population covariance.
RegrAvgX
¶RegrAvgX
(y, x)¶Returns the average of the independent variable (sum(x)/N
) as a
float
, or None
if there aren’t any matching rows.
RegrAvgY
¶RegrAvgY
(y, x)¶Returns the average of the dependent variable (sum(y)/N
) as a
float
, or None
if there aren’t any matching rows.
RegrCount
¶RegrCount
(y, x)¶Returns an int
of the number of input rows in which both expressions
are not null.
RegrIntercept
¶RegrIntercept
(y, x)¶Returns the y-intercept of the least-squares-fit linear equation determined
by the (x, y)
pairs as a float
, or None
if there aren’t any
matching rows.
RegrR2
¶RegrR2
(y, x)¶Returns the square of the correlation coefficient as a float
, or
None
if there aren’t any matching rows.
RegrSlope
¶RegrSlope
(y, x)¶Returns the slope of the least-squares-fit linear equation determined
by the (x, y)
pairs as a float
, or None
if there aren’t any
matching rows.
RegrSXX
¶RegrSXX
(y, x)¶Returns sum(x^2) - sum(x)^2/N
(“sum of squares” of the independent
variable) as a float
, or None
if there aren’t any matching rows.
We will use this example table:
| FIELD1 | FIELD2 | FIELD3 |
|--------|--------|--------|
| foo | 1 | 13 |
| bar | 2 | (null) |
| test | 3 | 13 |
Here’s some examples of some of the general-purpose aggregation functions:
>>> TestModel.objects.aggregate(result=StringAgg('field1', delimiter=';'))
{'result': 'foo;bar;test'}
>>> TestModel.objects.aggregate(result=ArrayAgg('field2'))
{'result': [1, 2, 3]}
>>> TestModel.objects.aggregate(result=ArrayAgg('field1'))
{'result': ['foo', 'bar', 'test']}
The next example shows the usage of statistical aggregate functions. The underlying math will be not described (you can read about this, for example, at wikipedia):
>>> TestModel.objects.aggregate(count=RegrCount(y='field3', x='field2'))
{'count': 2}
>>> TestModel.objects.aggregate(avgx=RegrAvgX(y='field3', x='field2'),
... avgy=RegrAvgY(y='field3', x='field2'))
{'avgx': 2, 'avgy': 13}
Jun 14, 2020