Django’s template language comes with a wide variety of built-in
tags and filters designed to address the
presentation logic needs of your application. Nevertheless, you may
find yourself needing functionality that is not covered by the core
set of template primitives. You can extend the template engine by
defining custom tags and filters using Python, and then make them
available to your templates using the {% load %}
tag.
The most common place to specify custom template tags and filters is inside
a Django app. If they relate to an existing app, it makes sense to bundle them
there; otherwise, they can be added to a new app. When a Django app is added
to INSTALLED_APPS
, any tags it defines in the conventional location
described below are automatically made available to load within templates.
The app should contain a templatetags
directory, at the same level as
models.py
, views.py
, etc. If this doesn’t already exist, create it -
don’t forget the __init__.py
file to ensure the directory is treated as a
Python package.
Development server won’t automatically restart
After adding the templatetags
module, you will need to restart your
server before you can use the tags or filters in templates.
Your custom tags and filters will live in a module inside the templatetags
directory. The name of the module file is the name you’ll use to load the tags
later, so be careful to pick a name that won’t clash with custom tags and
filters in another app.
For example, if your custom tags/filters are in a file called
poll_extras.py
, your app layout might look like this:
polls/
__init__.py
models.py
templatetags/
__init__.py
poll_extras.py
views.py
And in your template you would use the following:
{% load poll_extras %}
The app that contains the custom tags must be in INSTALLED_APPS
in
order for the {% load %}
tag to work. This is a security feature:
It allows you to host Python code for many template libraries on a single host
machine without enabling access to all of them for every Django installation.
There’s no limit on how many modules you put in the templatetags
package.
Just keep in mind that a {% load %}
statement will load
tags/filters for the given Python module name, not the name of the app.
To be a valid tag library, the module must contain a module-level variable
named register
that is a template.Library
instance, in which all the
tags and filters are registered. So, near the top of your module, put the
following:
from django import template
register = template.Library()
Alternatively, template tag modules can be registered through the
'libraries'
argument to
DjangoTemplates
. This is useful if
you want to use a different label from the template tag module name when
loading template tags. It also enables you to register tags without installing
an application.
Behind the scenes
For a ton of examples, read the source code for Django’s default filters
and tags. They’re in django/template/defaultfilters.py
and
django/template/defaulttags.py
, respectively.
For more information on the load
tag, read its documentation.
Custom filters are just Python functions that take one or two arguments:
For example, in the filter {{ var|foo:"bar" }}
, the filter foo
would be
passed the variable var
and the argument "bar"
.
Since the template language doesn’t provide exception handling, any exception raised from a template filter will be exposed as a server error. Thus, filter functions should avoid raising exceptions if there is a reasonable fallback value to return. In case of input that represents a clear bug in a template, raising an exception may still be better than silent failure which hides the bug.
Here’s an example filter definition:
def cut(value, arg):
"""Removes all values of arg from the given string"""
return value.replace(arg, '')
And here’s an example of how that filter would be used:
{{ somevariable|cut:"0" }}
Most filters don’t take arguments. In this case, just leave the argument out of your function. Example:
def lower(value): # Only one argument.
"""Converts a string into all lowercase"""
return value.lower()
django.template.Library.
filter
()¶Once you’ve written your filter definition, you need to register it with
your Library
instance, to make it available to Django’s template language:
register.filter('cut', cut)
register.filter('lower', lower)
The Library.filter()
method takes two arguments:
You can use register.filter()
as a decorator instead:
@register.filter(name='cut')
def cut(value, arg):
return value.replace(arg, '')
@register.filter
def lower(value):
return value.lower()
If you leave off the name
argument, as in the second example above, Django
will use the function’s name as the filter name.
Finally, register.filter()
also accepts three keyword arguments,
is_safe
, needs_autoescape
, and expects_localtime
. These arguments
are described in filters and auto-escaping and
filters and time zones below.
django.template.defaultfilters.
stringfilter
()¶If you’re writing a template filter that only expects a string as the first
argument, you should use the decorator stringfilter
. This will
convert an object to its string value before being passed to your function:
from django import template
from django.template.defaultfilters import stringfilter
register = template.Library()
@register.filter
@stringfilter
def lower(value):
return value.lower()
This way, you’ll be able to pass, say, an integer to this filter, and it
won’t cause an AttributeError
(because integers don’t have lower()
methods).
When writing a custom filter, give some thought to how the filter will interact with Django’s auto-escaping behavior. Note that three types of strings can be passed around inside the template code:
Raw strings are the native Python str
or unicode
types. On
output, they’re escaped if auto-escaping is in effect and presented
unchanged, otherwise.
Safe strings are strings that have been marked safe from further escaping at output time. Any necessary escaping has already been done. They’re commonly used for output that contains raw HTML that is intended to be interpreted as-is on the client side.
Internally, these strings are of type SafeBytes
or SafeText
.
They share a common base class of SafeData
, so you can test
for them using code like:
if isinstance(value, SafeData):
# Do something with the "safe" string.
...
Template filter code falls into one of two situations:
Your filter does not introduce any HTML-unsafe characters (<
, >
,
'
, "
or &
) into the result that were not already present. In
this case, you can let Django take care of all the auto-escaping
handling for you. All you need to do is set the is_safe
flag to True
when you register your filter function, like so:
@register.filter(is_safe=True)
def myfilter(value):
return value
This flag tells Django that if a “safe” string is passed into your filter, the result will still be “safe” and if a non-safe string is passed in, Django will automatically escape it, if necessary.
You can think of this as meaning “this filter is safe – it doesn’t introduce any possibility of unsafe HTML.”
The reason is_safe
is necessary is because there are plenty of
normal string operations that will turn a SafeData
object back into
a normal str
or unicode
object and, rather than try to catch
them all, which would be very difficult, Django repairs the damage after
the filter has completed.
For example, suppose you have a filter that adds the string xx
to
the end of any input. Since this introduces no dangerous HTML characters
to the result (aside from any that were already present), you should
mark your filter with is_safe
:
@register.filter(is_safe=True)
def add_xx(value):
return '%sxx' % value
When this filter is used in a template where auto-escaping is enabled, Django will escape the output whenever the input is not already marked as “safe”.
By default, is_safe
is False
, and you can omit it from any filters
where it isn’t required.
Be careful when deciding if your filter really does leave safe strings
as safe. If you’re removing characters, you might inadvertently leave
unbalanced HTML tags or entities in the result. For example, removing a
>
from the input might turn <a>
into <a
, which would need to
be escaped on output to avoid causing problems. Similarly, removing a
semicolon (;
) can turn &
into &
, which is no longer a
valid entity and thus needs further escaping. Most cases won’t be nearly
this tricky, but keep an eye out for any problems like that when
reviewing your code.
Marking a filter is_safe
will coerce the filter’s return value to
a string. If your filter should return a boolean or other non-string
value, marking it is_safe
will probably have unintended
consequences (such as converting a boolean False to the string
‘False’).
Alternatively, your filter code can manually take care of any necessary escaping. This is necessary when you’re introducing new HTML markup into the result. You want to mark the output as safe from further escaping so that your HTML markup isn’t escaped further, so you’ll need to handle the input yourself.
To mark the output as a safe string, use
django.utils.safestring.mark_safe()
.
Be careful, though. You need to do more than just mark the output as safe. You need to ensure it really is safe, and what you do depends on whether auto-escaping is in effect. The idea is to write filters that can operate in templates where auto-escaping is either on or off in order to make things easier for your template authors.
In order for your filter to know the current auto-escaping state, set the
needs_autoescape
flag to True
when you register your filter function.
(If you don’t specify this flag, it defaults to False
). This flag tells
Django that your filter function wants to be passed an extra keyword
argument, called autoescape
, that is True
if auto-escaping is in
effect and False
otherwise. It is recommended to set the default of the
autoescape
parameter to True
, so that if you call the function
from Python code it will have escaping enabled by default.
For example, let’s write a filter that emphasizes the first character of a string:
from django import template
from django.utils.html import conditional_escape
from django.utils.safestring import mark_safe
register = template.Library()
@register.filter(needs_autoescape=True)
def initial_letter_filter(text, autoescape=True):
first, other = text[0], text[1:]
if autoescape:
esc = conditional_escape
else:
esc = lambda x: x
result = '<strong>%s</strong>%s' % (esc(first), esc(other))
return mark_safe(result)
The needs_autoescape
flag and the autoescape
keyword argument mean
that our function will know whether automatic escaping is in effect when the
filter is called. We use autoescape
to decide whether the input data
needs to be passed through django.utils.html.conditional_escape
or not.
(In the latter case, we just use the identity function as the “escape”
function.) The conditional_escape()
function is like escape()
except
it only escapes input that is not a SafeData
instance. If a
SafeData
instance is passed to conditional_escape()
, the data is
returned unchanged.
Finally, in the above example, we remember to mark the result as safe so that our HTML is inserted directly into the template without further escaping.
There’s no need to worry about the is_safe
flag in this case
(although including it wouldn’t hurt anything). Whenever you manually
handle the auto-escaping issues and return a safe string, the
is_safe
flag won’t change anything either way.
Warning
Avoiding XSS vulnerabilities when reusing built-in filters
Django’s built-in filters have autoescape=True
by default in order to
get the proper autoescaping behavior and avoid a cross-site script
vulnerability.
In older versions of Django, be careful when reusing Django’s built-in
filters as autoescape
defaults to None
. You’ll need to pass
autoescape=True
to get autoescaping.
For example, if you wanted to write a custom filter called
urlize_and_linebreaks
that combined the urlize
and
linebreaksbr
filters, the filter would look like:
from django.template.defaultfilters import linebreaksbr, urlize
@register.filter(needs_autoescape=True)
def urlize_and_linebreaks(text, autoescape=True):
return linebreaksbr(
urlize(text, autoescape=autoescape),
autoescape=autoescape
)
Then:
{{ comment|urlize_and_linebreaks }}
would be equivalent to:
{{ comment|urlize|linebreaksbr }}
If you write a custom filter that operates on datetime
objects, you’ll usually register it with the expects_localtime
flag set to
True
:
@register.filter(expects_localtime=True)
def businesshours(value):
try:
return 9 <= value.hour < 17
except AttributeError:
return ''
When this flag is set, if the first argument to your filter is a time zone aware datetime, Django will convert it to the current time zone before passing it to your filter when appropriate, according to rules for time zones conversions in templates.
Tags are more complex than filters, because tags can do anything. Django provides a number of shortcuts that make writing most types of tags easier. First we’ll explore those shortcuts, then explain how to write a tag from scratch for those cases when the shortcuts aren’t powerful enough.
django.template.Library.
simple_tag
()¶Many template tags take a number of arguments – strings or template variables
– and return a result after doing some processing based solely on
the input arguments and some external information. For example, a
current_time
tag might accept a format string and return the time as a
string formatted accordingly.
To ease the creation of these types of tags, Django provides a helper function,
simple_tag
. This function, which is a method of
django.template.Library
, takes a function that accepts any number of
arguments, wraps it in a render
function and the other necessary bits
mentioned above and registers it with the template system.
Our current_time
function could thus be written like this:
import datetime
from django import template
register = template.Library()
@register.simple_tag
def current_time(format_string):
return datetime.datetime.now().strftime(format_string)
A few things to note about the simple_tag
helper function:
Unlike other tag utilities, simple_tag
passes its output through
conditional_escape()
if the template context is in
autoescape mode, to ensure correct HTML and protect you from XSS
vulnerabilities.
If additional escaping is not desired, you will need to use
mark_safe()
if you are absolutely sure that your
code does not contain XSS vulnerabilities. For building small HTML snippets,
use of format_html()
instead of mark_safe()
is
strongly recommended.
If your template tag needs to access the current context, you can use the
takes_context
argument when registering your tag:
@register.simple_tag(takes_context=True)
def current_time(context, format_string):
timezone = context['timezone']
return your_get_current_time_method(timezone, format_string)
Note that the first argument must be called context
.
For more information on how the takes_context
option works, see the section
on inclusion tags.
If you need to rename your tag, you can provide a custom name for it:
register.simple_tag(lambda x: x - 1, name='minusone')
@register.simple_tag(name='minustwo')
def some_function(value):
return value - 2
simple_tag
functions may accept any number of positional or keyword
arguments. For example:
@register.simple_tag
def my_tag(a, b, *args, **kwargs):
warning = kwargs['warning']
profile = kwargs['profile']
...
return ...
Then in the template any number of arguments, separated by spaces, may be
passed to the template tag. Like in Python, the values for keyword arguments
are set using the equal sign (“=
”) and must be provided after the
positional arguments. For example:
{% my_tag 123 "abcd" book.title warning=message|lower profile=user.profile %}
It’s possible to store the tag results in a template variable rather than
directly outputting it. This is done by using the as
argument followed by
the variable name. Doing so enables you to output the content yourself where
you see fit:
{% current_time "%Y-%m-%d %I:%M %p" as the_time %}
<p>The time is {{ the_time }}.</p>
django.template.Library.
inclusion_tag
()¶Another common type of template tag is the type that displays some data by
rendering another template. For example, Django’s admin interface uses custom
template tags to display the buttons along the bottom of the “add/change” form
pages. Those buttons always look the same, but the link targets change
depending on the object being edited – so they’re a perfect case for using a
small template that is filled with details from the current object. (In the
admin’s case, this is the submit_row
tag.)
These sorts of tags are called “inclusion tags”.
Writing inclusion tags is probably best demonstrated by example. Let’s write a
tag that outputs a list of choices for a given Poll
object, such as was
created in the tutorials. We’ll use the tag like this:
{% show_results poll %}
…and the output will be something like this:
<ul>
<li>First choice</li>
<li>Second choice</li>
<li>Third choice</li>
</ul>
First, define the function that takes the argument and produces a dictionary of data for the result. The important point here is we only need to return a dictionary, not anything more complex. This will be used as a template context for the template fragment. Example:
def show_results(poll):
choices = poll.choice_set.all()
return {'choices': choices}
Next, create the template used to render the tag’s output. This template is a fixed feature of the tag: the tag writer specifies it, not the template designer. Following our example, the template is very simple:
<ul>
{% for choice in choices %}
<li> {{ choice }} </li>
{% endfor %}
</ul>
Now, create and register the inclusion tag by calling the inclusion_tag()
method on a Library
object. Following our example, if the above template is
in a file called results.html
in a directory that’s searched by the
template loader, we’d register the tag like this:
# Here, register is a django.template.Library instance, as before
@register.inclusion_tag('results.html')
def show_results(poll):
...
Alternatively it is possible to register the inclusion tag using a
django.template.Template
instance:
from django.template.loader import get_template
t = get_template('results.html')
register.inclusion_tag(t)(show_results)
…when first creating the function.
Sometimes, your inclusion tags might require a large number of arguments,
making it a pain for template authors to pass in all the arguments and remember
their order. To solve this, Django provides a takes_context
option for
inclusion tags. If you specify takes_context
in creating a template tag,
the tag will have no required arguments, and the underlying Python function
will have one argument – the template context as of when the tag was called.
For example, say you’re writing an inclusion tag that will always be used in a
context that contains home_link
and home_title
variables that point
back to the main page. Here’s what the Python function would look like:
@register.inclusion_tag('link.html', takes_context=True)
def jump_link(context):
return {
'link': context['home_link'],
'title': context['home_title'],
}
Note that the first parameter to the function must be called context
.
In that register.inclusion_tag()
line, we specified takes_context=True
and the name of the template. Here’s what the template link.html
might look
like:
Jump directly to <a href="{{ link }}">{{ title }}</a>.
Then, any time you want to use that custom tag, load its library and call it without any arguments, like so:
{% jump_link %}
Note that when you’re using takes_context=True
, there’s no need to pass
arguments to the template tag. It automatically gets access to the context.
The takes_context
parameter defaults to False
. When it’s set to
True
, the tag is passed the context object, as in this example. That’s the
only difference between this case and the previous inclusion_tag
example.
inclusion_tag
functions may accept any number of positional or keyword
arguments. For example:
@register.inclusion_tag('my_template.html')
def my_tag(a, b, *args, **kwargs):
warning = kwargs['warning']
profile = kwargs['profile']
...
return ...
Then in the template any number of arguments, separated by spaces, may be
passed to the template tag. Like in Python, the values for keyword arguments
are set using the equal sign (“=
”) and must be provided after the
positional arguments. For example:
{% my_tag 123 "abcd" book.title warning=message|lower profile=user.profile %}
django.template.Library.
assignment_tag
()¶Deprecated since version 1.9: simple_tag
can now store results in a template variable and should
be used instead.
To ease the creation of tags setting a variable in the context, Django provides
a helper function, assignment_tag
. This function works the same way as
simple_tag()
except that it stores the tag’s
result in a specified context variable instead of directly outputting it.
Our earlier current_time
function could thus be written like this:
@register.assignment_tag
def get_current_time(format_string):
return datetime.datetime.now().strftime(format_string)
You may then store the result in a template variable using the as
argument
followed by the variable name, and output it yourself where you see fit:
{% get_current_time "%Y-%m-%d %I:%M %p" as the_time %}
<p>The time is {{ the_time }}.</p>
Sometimes the basic features for custom template tag creation aren’t enough. Don’t worry, Django gives you complete access to the internals required to build a template tag from the ground up.
The template system works in a two-step process: compiling and rendering. To define a custom template tag, you specify how the compilation works and how the rendering works.
When Django compiles a template, it splits the raw template text into
‘’nodes’‘. Each node is an instance of django.template.Node
and has
a render()
method. A compiled template is, simply, a list of Node
objects. When you call render()
on a compiled template object, the template
calls render()
on each Node
in its node list, with the given context.
The results are all concatenated together to form the output of the template.
Thus, to define a custom template tag, you specify how the raw template tag is
converted into a Node
(the compilation function), and what the node’s
render()
method does.
For each template tag the template parser encounters, it calls a Python
function with the tag contents and the parser object itself. This function is
responsible for returning a Node
instance based on the contents of the tag.
For example, let’s write a full implementation of our simple template tag,
{% current_time %}
, that displays the current date/time, formatted according
to a parameter given in the tag, in strftime()
syntax. It’s a good
idea to decide the tag syntax before anything else. In our case, let’s say the
tag should be used like this:
<p>The time is {% current_time "%Y-%m-%d %I:%M %p" %}.</p>
The parser for this function should grab the parameter and create a Node
object:
from django import template
def do_current_time(parser, token):
try:
# split_contents() knows not to split quoted strings.
tag_name, format_string = token.split_contents()
except ValueError:
raise template.TemplateSyntaxError(
"%r tag requires a single argument" % token.contents.split()[0]
)
if not (format_string[0] == format_string[-1] and format_string[0] in ('"', "'")):
raise template.TemplateSyntaxError(
"%r tag's argument should be in quotes" % tag_name
)
return CurrentTimeNode(format_string[1:-1])
Notes:
parser
is the template parser object. We don’t need it in this
example.token.contents
is a string of the raw contents of the tag. In our
example, it’s 'current_time "%Y-%m-%d %I:%M %p"'
.token.split_contents()
method separates the arguments on spaces
while keeping quoted strings together. The more straightforward
token.contents.split()
wouldn’t be as robust, as it would naively
split on all spaces, including those within quoted strings. It’s a good
idea to always use token.split_contents()
.django.template.TemplateSyntaxError
, with helpful messages, for
any syntax error.TemplateSyntaxError
exceptions use the tag_name
variable.
Don’t hard-code the tag’s name in your error messages, because that
couples the tag’s name to your function. token.contents.split()[0]
will ‘’always’’ be the name of your tag – even when the tag has no
arguments.CurrentTimeNode
with everything the node needs
to know about this tag. In this case, it just passes the argument –
"%Y-%m-%d %I:%M %p"
. The leading and trailing quotes from the
template tag are removed in format_string[1:-1]
.The second step in writing custom tags is to define a Node
subclass that
has a render()
method.
Continuing the above example, we need to define CurrentTimeNode
:
import datetime
from django import template
class CurrentTimeNode(template.Node):
def __init__(self, format_string):
self.format_string = format_string
def render(self, context):
return datetime.datetime.now().strftime(self.format_string)
Notes:
__init__()
gets the format_string
from do_current_time()
.
Always pass any options/parameters/arguments to a Node
via its
__init__()
.render()
method is where the work actually happens.render()
should generally fail silently, particularly in a production
environment. In some cases however, particularly if
context.template.engine.debug
is True
, this method may raise an
exception to make debugging easier. For example, several core tags raise
django.template.TemplateSyntaxError
if they receive the wrong number or
type of arguments.Ultimately, this decoupling of compilation and rendering results in an efficient template system, because a template can render multiple contexts without having to be parsed multiple times.
The output from template tags is not automatically run through the
auto-escaping filters (with the exception of
simple_tag()
as described above). However, there
are still a couple of things you should keep in mind when writing a template
tag.
If the render()
function of your template stores the result in a context
variable (rather than returning the result in a string), it should take care
to call mark_safe()
if appropriate. When the variable is ultimately
rendered, it will be affected by the auto-escape setting in effect at the
time, so content that should be safe from further escaping needs to be marked
as such.
Also, if your template tag creates a new context for performing some
sub-rendering, set the auto-escape attribute to the current context’s value.
The __init__
method for the Context
class takes a parameter called
autoescape
that you can use for this purpose. For example:
from django.template import Context
def render(self, context):
# ...
new_context = Context({'var': obj}, autoescape=context.autoescape)
# ... Do something with new_context ...
This is not a very common situation, but it’s useful if you’re rendering a template yourself. For example:
def render(self, context):
t = context.template.engine.get_template('small_fragment.html')
return t.render(Context({'var': obj}, autoescape=context.autoescape))
If we had neglected to pass in the current context.autoescape
value to our
new Context
in this example, the results would have always been
automatically escaped, which may not be the desired behavior if the template
tag is used inside a {% autoescape off %}
block.
Once a node is parsed, its render
method may be called any number of times.
Since Django is sometimes run in multi-threaded environments, a single node may
be simultaneously rendering with different contexts in response to two separate
requests. Therefore, it’s important to make sure your template tags are thread
safe.
To make sure your template tags are thread safe, you should never store state
information on the node itself. For example, Django provides a builtin
cycle
template tag that cycles among a list of given strings each time
it’s rendered:
{% for o in some_list %}
<tr class="{% cycle 'row1' 'row2' %}">
...
</tr>
{% endfor %}
A naive implementation of CycleNode
might look something like this:
import itertools
from django import template
class CycleNode(template.Node):
def __init__(self, cyclevars):
self.cycle_iter = itertools.cycle(cyclevars)
def render(self, context):
return next(self.cycle_iter)
But, suppose we have two templates rendering the template snippet from above at the same time:
CycleNode.render()
returns ‘row1’CycleNode.render()
returns ‘row2’CycleNode.render()
returns ‘row1’CycleNode.render()
returns ‘row2’The CycleNode is iterating, but it’s iterating globally. As far as Thread 1 and Thread 2 are concerned, it’s always returning the same value. This is obviously not what we want!
To address this problem, Django provides a render_context
that’s associated
with the context
of the template that is currently being rendered. The
render_context
behaves like a Python dictionary, and should be used to
store Node
state between invocations of the render
method.
Let’s refactor our CycleNode
implementation to use the render_context
:
class CycleNode(template.Node):
def __init__(self, cyclevars):
self.cyclevars = cyclevars
def render(self, context):
if self not in context.render_context:
context.render_context[self] = itertools.cycle(self.cyclevars)
cycle_iter = context.render_context[self]
return next(cycle_iter)
Note that it’s perfectly safe to store global information that will not change
throughout the life of the Node
as an attribute. In the case of
CycleNode
, the cyclevars
argument doesn’t change after the Node
is
instantiated, so we don’t need to put it in the render_context
. But state
information that is specific to the template that is currently being rendered,
like the current iteration of the CycleNode
, should be stored in the
render_context
.
Note
Notice how we used self
to scope the CycleNode
specific information
within the render_context
. There may be multiple CycleNodes
in a
given template, so we need to be careful not to clobber another node’s
state information. The easiest way to do this is to always use self
as
the key into render_context
. If you’re keeping track of several state
variables, make render_context[self]
a dictionary.
Finally, register the tag with your module’s Library
instance, as explained
in writing custom template filters
above. Example:
register.tag('current_time', do_current_time)
The tag()
method takes two arguments:
As with filter registration, it is also possible to use this as a decorator:
@register.tag(name="current_time")
def do_current_time(parser, token):
...
@register.tag
def shout(parser, token):
...
If you leave off the name
argument, as in the second example above, Django
will use the function’s name as the tag name.
Although you can pass any number of arguments to a template tag using
token.split_contents()
, the arguments are all unpacked as
string literals. A little more work is required in order to pass dynamic
content (a template variable) to a template tag as an argument.
While the previous examples have formatted the current time into a string and
returned the string, suppose you wanted to pass in a
DateTimeField
from an object and have the template
tag format that date-time:
<p>This post was last updated at {% format_time blog_entry.date_updated "%Y-%m-%d %I:%M %p" %}.</p>
Initially, token.split_contents()
will return three values:
format_time
.'blog_entry.date_updated'
(without the surrounding
quotes).'"%Y-%m-%d %I:%M %p"'
. The return value from
split_contents()
will include the leading and trailing quotes for
string literals like this.Now your tag should begin to look like this:
from django import template
def do_format_time(parser, token):
try:
# split_contents() knows not to split quoted strings.
tag_name, date_to_be_formatted, format_string = token.split_contents()
except ValueError:
raise template.TemplateSyntaxError(
"%r tag requires exactly two arguments" % token.contents.split()[0]
)
if not (format_string[0] == format_string[-1] and format_string[0] in ('"', "'")):
raise template.TemplateSyntaxError(
"%r tag's argument should be in quotes" % tag_name
)
return FormatTimeNode(date_to_be_formatted, format_string[1:-1])
You also have to change the renderer to retrieve the actual contents of the
date_updated
property of the blog_entry
object. This can be
accomplished by using the Variable()
class in django.template
.
To use the Variable
class, simply instantiate it with the name of the
variable to be resolved, and then call variable.resolve(context)
. So,
for example:
class FormatTimeNode(template.Node):
def __init__(self, date_to_be_formatted, format_string):
self.date_to_be_formatted = template.Variable(date_to_be_formatted)
self.format_string = format_string
def render(self, context):
try:
actual_date = self.date_to_be_formatted.resolve(context)
return actual_date.strftime(self.format_string)
except template.VariableDoesNotExist:
return ''
Variable resolution will throw a VariableDoesNotExist
exception if it
cannot resolve the string passed to it in the current context of the page.
The above examples simply output a value. Generally, it’s more flexible if your template tags set template variables instead of outputting values. That way, template authors can reuse the values that your template tags create.
To set a variable in the context, just use dictionary assignment on the context
object in the render()
method. Here’s an updated version of
CurrentTimeNode
that sets a template variable current_time
instead of
outputting it:
import datetime
from django import template
class CurrentTimeNode2(template.Node):
def __init__(self, format_string):
self.format_string = format_string
def render(self, context):
context['current_time'] = datetime.datetime.now().strftime(self.format_string)
return ''
Note that render()
returns the empty string. render()
should always
return string output. If all the template tag does is set a variable,
render()
should return the empty string.
Here’s how you’d use this new version of the tag:
{% current_time "%Y-%M-%d %I:%M %p" %}<p>The time is {{ current_time }}.</p>
Variable scope in context
Any variable set in the context will only be available in the same
block
of the template in which it was assigned. This behavior is
intentional; it provides a scope for variables so that they don’t conflict
with context in other blocks.
But, there’s a problem with CurrentTimeNode2
: The variable name
current_time
is hard-coded. This means you’ll need to make sure your
template doesn’t use {{ current_time }}
anywhere else, because the
{% current_time %}
will blindly overwrite that variable’s value. A cleaner
solution is to make the template tag specify the name of the output variable,
like so:
{% current_time "%Y-%M-%d %I:%M %p" as my_current_time %}
<p>The current time is {{ my_current_time }}.</p>
To do that, you’ll need to refactor both the compilation function and Node
class, like so:
import re
class CurrentTimeNode3(template.Node):
def __init__(self, format_string, var_name):
self.format_string = format_string
self.var_name = var_name
def render(self, context):
context[self.var_name] = datetime.datetime.now().strftime(self.format_string)
return ''
def do_current_time(parser, token):
# This version uses a regular expression to parse tag contents.
try:
# Splitting by None == splitting by spaces.
tag_name, arg = token.contents.split(None, 1)
except ValueError:
raise template.TemplateSyntaxError(
"%r tag requires arguments" % token.contents.split()[0]
)
m = re.search(r'(.*?) as (\w+)', arg)
if not m:
raise template.TemplateSyntaxError("%r tag had invalid arguments" % tag_name)
format_string, var_name = m.groups()
if not (format_string[0] == format_string[-1] and format_string[0] in ('"', "'")):
raise template.TemplateSyntaxError(
"%r tag's argument should be in quotes" % tag_name
)
return CurrentTimeNode3(format_string[1:-1], var_name)
The difference here is that do_current_time()
grabs the format string and
the variable name, passing both to CurrentTimeNode3
.
Finally, if you only need to have a simple syntax for your custom
context-updating template tag, consider using the
simple_tag()
shortcut, which supports assigning
the tag results to a template variable.
Template tags can work in tandem. For instance, the standard
{% comment %}
tag hides everything until {% endcomment %}
.
To create a template tag such as this, use parser.parse()
in your
compilation function.
Here’s how a simplified {% comment %}
tag might be implemented:
def do_comment(parser, token):
nodelist = parser.parse(('endcomment',))
parser.delete_first_token()
return CommentNode()
class CommentNode(template.Node):
def render(self, context):
return ''
Note
The actual implementation of {% comment %}
is slightly
different in that it allows broken template tags to appear between
{% comment %}
and {% endcomment %}
. It does so by calling
parser.skip_past('endcomment')
instead of parser.parse(('endcomment',))
followed by parser.delete_first_token()
, thus avoiding the generation of a
node list.
parser.parse()
takes a tuple of names of block tags ‘’to parse until’‘. It
returns an instance of django.template.NodeList
, which is a list of
all Node
objects that the parser encountered ‘’before’’ it encountered
any of the tags named in the tuple.
In "nodelist = parser.parse(('endcomment',))"
in the above example,
nodelist
is a list of all nodes between the {% comment %}
and
{% endcomment %}
, not counting {% comment %}
and {% endcomment %}
themselves.
After parser.parse()
is called, the parser hasn’t yet “consumed” the
{% endcomment %}
tag, so the code needs to explicitly call
parser.delete_first_token()
.
CommentNode.render()
simply returns an empty string. Anything between
{% comment %}
and {% endcomment %}
is ignored.
In the previous example, do_comment()
discarded everything between
{% comment %}
and {% endcomment %}
. Instead of doing that, it’s
possible to do something with the code between block tags.
For example, here’s a custom template tag, {% upper %}
, that capitalizes
everything between itself and {% endupper %}
.
Usage:
{% upper %}This will appear in uppercase, {{ your_name }}.{% endupper %}
As in the previous example, we’ll use parser.parse()
. But this time, we
pass the resulting nodelist
to the Node
:
def do_upper(parser, token):
nodelist = parser.parse(('endupper',))
parser.delete_first_token()
return UpperNode(nodelist)
class UpperNode(template.Node):
def __init__(self, nodelist):
self.nodelist = nodelist
def render(self, context):
output = self.nodelist.render(context)
return output.upper()
The only new concept here is the self.nodelist.render(context)
in
UpperNode.render()
.
For more examples of complex rendering, see the source code of
{% for %}
in django/template/defaulttags.py
and
{% if %}
in django/template/smartif.py
.
Jun 14, 2020