/sys$common/syshlp/helplib.hlb System Services, $CRMPSC *Conan The Librarian (sorry for the slow response - running on an old VAX) |
Allows a process to associate (map) a section of its address space with either a specified section of a file (a disk file section) or specified physical addresses represented by page frame numbers (a page frame section). This service also allows the process to create either type of section and to specify that the section be available only to the creating process (private section) or to all processes that map to it (global section). Format SYS$CRMPSC [inadr] ,[retadr] ,[acmode] ,[flags] ,[gsdnam] ,[ident] ,[relpag] ,[chan] ,[pagcnt] ,[vbn] ,[prot] ,[pfc] C Prototype int sys$crmpsc (struct _va_range *inadr, struct _va_range *retadr, unsigned int acmode, unsigned int flags, void *gsdnam, unsigned int relpag, unsigned short int chan, unsigned int pagcnt, unsigned int vbn, unsigned int prot,unsigned int pfc); Arguments inadr OpenVMS usage:address_range type: longword (unsigned) access: read only mechanism: by reference Starting and ending virtual addresses into which the section is to be mapped. The inadr argument is the address of a 2-longword array containing, in order, the starting and ending process virtual addresses. Only the virtual page number portion of each virtual address is used to specify which pages are to be mapped; the low-order byte-within-page bits are ignored for this purpose. The interpretation of the inadr argument depends on the setting of SEC$M_EXPREG in the inadr argument and whether you are using an Alpha or a VAX system. Refer to the OpenVMS System Services Reference Manual for a complete description of these differences. retadr OpenVMS usage:address_range type: longword (unsigned) access: write only mechanism: by reference-array reference Starting and ending process virtual addresses into which the section was actually mapped by $CRMPSC. The retadr argument is the address of a 2-longword array containing, in order, the starting and ending process virtual addresses. On Alpha systems, the retadr argument returns starting and ending addresses of the usable range of addresses. This might differ from the total amount mapped. The retadr argument is required when the relpag argument is specified. If the section being mapped does not completely fill the last page used to map the section, the retadr argument indicates the highest address that actually maps the section. If the relpag argument is used to specify an offset into the section, the retadr argument reflects the offset. acmode OpenVMS usage:access_mode type: longword (unsigned) access: read only mechanism: by value Access mode that is to be the owner of the pages created during the mapping. The acmode argument is a longword containing the access mode. The $PSLDEF macro defines the following symbols for the four access modes: Symbol Access Mode PSL$C_KERNEL Kernel PSL$C_EXEC Executive PSL$C_SUPER Supervisor PSL$C_USER User The most privileged access mode used is the access mode of the caller. flags OpenVMS usage:mask_longword type: longword (unsigned) access: read only mechanism: by value Flag mask specifying the type of section to be created or mapped to, as well as its characteristics. The flags argument is a longword bit vector wherein each bit corresponds to a flag. The $SECDEF macro defines a symbolic name for each flag. You construct the flags argument by performing a logical OR operation on the symbol names for all desired flags. The following table describes each flag and the default value that it supersedes: Flag Description SEC$M_GBL Pages form a global section. The default is private section. SEC$M_CRF Pages are copy-on-reference. By default, pages are shared. SEC$M_DZRO Pages are demand-zero pages. By default, they are not zeroed when copied. For page file sections, the default is demand zero. SEC$M_EXPREG Pages are mapped into the first available space. By default, pages are mapped into the range specified by the inadr argument. See the inadr argument description for a complete explanation of how to set the SEC$M_ EXPREG flag. SEC$M_WRT Pages form a read/write section. By default, pages form a read-only section. For page file sections, the default is writeable. SEC$M_PERM Global section is permanent. By default, global sections are temporary. SEC$M_PFNMAP Pages form a page frame section. By default, pages form a disk file section. Pages mapped by SEC$M_PFNMAP are not included in or charged against the process's working set; they are always valid. Do not lock these pages in the working set by using $LKWSET; this can result in a machine check if they are in I/O space. On Alpha systems, when the SEC$M_PFNMAP flag is set, the pagcnt and relpag arguments are interpreted in CPU-specific pages, not as pagelets. SEC$M_SYSGBL Pages form a system global section. By default, pages form a group global section. SEC$M_PAGFIL Pages form a global page file section. By default, pages form a disk file section. SEC$M_ PAGFIL also implies SEC$M_WRT and SEC$M_DZRO. SEC$M_EXECUTE Pages are mapped if the caller has execute access. This flag takes effect only (1) when specified from executive or kernel mode, (2) when the SEC$M_GBL flag is also specified, and (3) when SEC$M_WRT is not specified. By default $CRMPSC performs a read access check against the section. SEC$M_NO_ Pages cannot overmap existing address space. OVERMAP Note that, by default, pages can overmap existing address space. gsdnam OpenVMS usage:section_name type: character-coded text string access: read only mechanism: by descriptor-fixed-length string descriptor Name of the global section. The gsdnam argument is the address of a character string descriptor pointing to this name string. For group global sections, the operating system interprets the UIC group as part of the global section name; thus, the names of global sections are unique to UIC groups. You can specify any name from 1 to 43 characters. All processes mapping to the same global section must specify the same name. Note that the name is case sensitive. Use of characters valid in logical names is strongly encouraged. Valid values include alphanumeric characters, the dollar sign ($), and the underscore (_). If the name string begins with an underscore (_), the underscore is stripped and the resultant string is considered to be the actual name. Use of the colon (:) is not permitted. Names are first subject to a logical name translation, after the application of the prefix GBL$ to the name. If the result translates, it is used as the name of the section. If the resulting name does not translate, the name specified by the caller is used as the name of the section. Additional information on logical name translations and on section name processing is available in the OpenVMS Programming Concepts Manual. ident OpenVMS usage:section_id type: quadword (unsigned) access: read only mechanism: by reference Identification value specifying the version number of a global section and, for processes mapping to an existing global section, the criteria for matching the identification. The ident argument is the address of a quadword structure containing three fields. The version number is in the second longword. The version number contains two fields: a minor identification in the low-order 24 bits and a major identification in the high-order 8 bits. You can assign values for these fields by installation convention to differentiate versions of global sections. If no version number is specified when a section is created, processes that specify a version number when mapping cannot access the global section. The first longword specifies, in its low-order two bits, the matching criteria. The valid values, symbolic names by which they can be specified, and their meanings are as follows: Value/Name Match Criteria 0 SEC$K_MATALL Match all versions of the section. 1 SEC$K_MATEQU Match only if major and minor identifications match. 2 SEC$K_MATLEQ Match if the major identifications are equal and the minor identification of the mapper is less than or equal to the minor identification of the global section. When a section is mapped at creation time, the match control field is ignored. If you do not specify the ident argument or specify it as 0 (the default), the version number and match control fields default to 0. relpag OpenVMS usage:longword_unsigned type: longword (unsigned) access: read only mechanism: by value Relative page number within the global section of the first page in the section to be mapped. The relpag argument is a longword containing this page number. On Alpha systems, the relpag argument is interpreted as an index into the section file, measured in pagelets for a file-backed section or in CPU-specific pages for a PFN-mapped section. On Alpha and VAX systems, you use this argument only for global sections. If you do not specify the relpag argument or specify it as 0 (the default), the global section is mapped beginning with the first virtual block in the file. chan OpenVMS usage:channel type: word (unsigned) access: read only mechanism: by value Number of the channel on which the file has been accessed. The chan argument is a word containing this number. The file must have been accessed with the OpenVMS RMS macro $OPEN; the file options parameter (FOP) in the FAB must indicate a user file open (UFO keyword). The access mode at which the channel was opened must be equal to or less privileged than the access mode of the caller. pagcnt OpenVMS usage:longword_unsigned type: longword (unsigned) access: read only mechanism: by value Number of pages (on VAX systems) or pagelets (on Alpha systems) in the section. The pagcnt argument is a longword containing this number. On Alpha systems, the smallest allocation is an Alpha page, which is 8192 bytes. When requesting pagelets, the size requested is a multiple of 512 bytes, but the actual allocation is rounded to 8192. For example, when requesting 17 pagelets, the allocation is for two Alpha pages, 16384 bytes. On Alpha systems, if the SEC$M_PFNMAP flag bit is set, the pagcnt argument is interpreted as CPU-specific pages, not as pagelets. On Alpha and VAX systems, the specified page count is compared with the number of blocks in the section file; if they are different, the lower value is used. If you do not specify the page count or specify it as 0 (the default), the size of the section file is used. However, for physical page frame sections, this argument must not be 0. vbn OpenVMS usage:longword_unsigned type: longword (unsigned) access: read only mechanism: by value Virtual block number in the file that marks the beginning of the section. The vbn argument is a longword containing this number. If you do not specify the vbn argument or specify it as 0 (the default), the section is created beginning with the first virtual block in the file. If you specified page frame number mapping (by setting the SEC$M_ PFNMAP flag), the vbn argument specifies the CPU-specific page frame number where the section begins in memory. Refer to the OpenVMS System Services Reference Manual to view which arguments are required and which are optional for three different uses of the $CRMPSC service. prot OpenVMS usage:file_protection type: longword (unsigned) access: read only mechanism: by value Protection to be applied to the global page file and PFN sections. For file-backed sections, the protection is taken from the backing file and the prot argument is ignored. The mask contains four 4-bit fields. Bits are read from right to left in each field. Refer to the OpenVMS System Services Reference Manual to view the diagram depicting the mask. Cleared bits indicate that read, write, execute, and delete access, in that order, are granted to the particular category of user. Only read, write, and execute access are meaningful for section protection. Delete access bits are ignored. Read access also grants execute access for those situations where execute access applies. Protection is taken from the system or group global section template for page file or PFN global sections if the prot argument is not specified. pfc OpenVMS usage:longword_unsigned type: longword (unsigned) access: read only mechanism: by value Page fault cluster size indicating how many pages (on VAX systems) or pagelets (on Alpha systems) are to be brought into memory when a page fault occurs for a single page. On Alpha systems, this argument is not used for page file sections or physical page frame sections. The pfc argument is rounded up to CPU-specific pages. That is, at least 16 pagelets (on an Alpha system with an 8KB page size) will be mapped for each physical page. The system cannot map less than one physical page. On VAX systems, this argument is not used for page file sections or physical page frame sections.
|