perlfaq8 man page on Minix

Man page or keyword search:  
man Server   6208 pages
apropos Keyword Search (all sections)
Output format
Minix logo
[printable version]

PERLFAQ8(1)	       Perl Programmers Reference Guide		   PERLFAQ8(1)

NAME
       perlfaq8 - System Interaction

DESCRIPTION
       This section of the Perl FAQ covers questions involving operating
       system interaction.  Topics include interprocess communication (IPC),
       control over the user-interface (keyboard, screen and pointing
       devices), and most anything else not related to data manipulation.

       Read the FAQs and documentation specific to the port of perl to your
       operating system (eg, perlvms, perlplan9, ...).	These should contain
       more detailed information on the vagaries of your perl.

   How do I find out which operating system I'm running under?
       The $^O variable ($OSNAME if you use "English") contains an indication
       of the name of the operating system (not its release number) that your
       perl binary was built for.

   How come exec() doesn't return?
       (contributed by brian d foy)

       The "exec" function's job is to turn your process into another command
       and never to return. If that's not what you want to do, don't use
       "exec". :)

       If you want to run an external command and still keep your Perl process
       going, look at a piped "open", "fork", or "system".

   How do I do fancy stuff with the keyboard/screen/mouse?
       How you access/control keyboards, screens, and pointing devices
       ("mice") is system-dependent.  Try the following modules:

       Keyboard
		   Term::Cap		   Standard perl distribution
		   Term::ReadKey	   CPAN
		   Term::ReadLine::Gnu	   CPAN
		   Term::ReadLine::Perl	   CPAN
		   Term::Screen		   CPAN

       Screen
		   Term::Cap		   Standard perl distribution
		   Curses		   CPAN
		   Term::ANSIColor	   CPAN

       Mouse
		   Tk			   CPAN

       Some of these specific cases are shown as examples in other answers in
       this section of the perlfaq.

   How do I print something out in color?
       In general, you don't, because you don't know whether the recipient has
       a color-aware display device.  If you know that they have an ANSI
       terminal that understands color, you can use the "Term::ANSIColor"
       module from CPAN:

	       use Term::ANSIColor;
	       print color("red"), "Stop!\n", color("reset");
	       print color("green"), "Go!\n", color("reset");

       Or like this:

	       use Term::ANSIColor qw(:constants);
	       print RED, "Stop!\n", RESET;
	       print GREEN, "Go!\n", RESET;

   How do I read just one key without waiting for a return key?
       Controlling input buffering is a remarkably system-dependent matter.
       On many systems, you can just use the stty command as shown in "getc"
       in perlfunc, but as you see, that's already getting you into
       portability snags.

	       open(TTY, "+</dev/tty") or die "no tty: $!";
	       system "stty  cbreak </dev/tty >/dev/tty 2>&1";
	       $key = getc(TTY);	       # perhaps this works
	       # OR ELSE
	       sysread(TTY, $key, 1);  # probably this does
	       system "stty -cbreak </dev/tty >/dev/tty 2>&1";

       The "Term::ReadKey" module from CPAN offers an easy-to-use interface
       that should be more efficient than shelling out to stty for each key.
       It even includes limited support for Windows.

	       use Term::ReadKey;
	       ReadMode('cbreak');
	       $key = ReadKey(0);
	       ReadMode('normal');

       However, using the code requires that you have a working C compiler and
       can use it to build and install a CPAN module.  Here's a solution using
       the standard "POSIX" module, which is already on your system (assuming
       your system supports POSIX).

	       use HotKey;
	       $key = readkey();

       And here's the "HotKey" module, which hides the somewhat mystifying
       calls to manipulate the POSIX termios structures.

	       # HotKey.pm
	       package HotKey;

	       @ISA = qw(Exporter);
	       @EXPORT = qw(cbreak cooked readkey);

	       use strict;
	       use POSIX qw(:termios_h);
	       my ($term, $oterm, $echo, $noecho, $fd_stdin);

	       $fd_stdin = fileno(STDIN);
	       $term	 = POSIX::Termios->new();
	       $term->getattr($fd_stdin);
	       $oterm	  = $term->getlflag();

	       $echo	 = ECHO | ECHOK | ICANON;
	       $noecho	 = $oterm & ~$echo;

	       sub cbreak {
		       $term->setlflag($noecho);  # ok, so i don't want echo either
		       $term->setcc(VTIME, 1);
		       $term->setattr($fd_stdin, TCSANOW);
	       }

	       sub cooked {
		       $term->setlflag($oterm);
		       $term->setcc(VTIME, 0);
		       $term->setattr($fd_stdin, TCSANOW);
	       }

	       sub readkey {
		       my $key = '';
		       cbreak();
		       sysread(STDIN, $key, 1);
		       cooked();
		       return $key;
	       }

	       END { cooked() }

	       1;

   How do I check whether input is ready on the keyboard?
       The easiest way to do this is to read a key in nonblocking mode with
       the "Term::ReadKey" module from CPAN, passing it an argument of -1 to
       indicate not to block:

	       use Term::ReadKey;

	       ReadMode('cbreak');

	       if (defined ($char = ReadKey(-1)) ) {
		       # input was waiting and it was $char
	       } else {
		       # no input was waiting
	       }

	       ReadMode('normal');		    # restore normal tty settings

   How do I clear the screen?
       (contributed by brian d foy)

       To clear the screen, you just have to print the special sequence that
       tells the terminal to clear the screen. Once you have that sequence,
       output it when you want to clear the screen.

       You can use the "Term::ANSIScreen" module to get the special sequence.
       Import the "cls" function (or the ":screen" tag):

	       use Term::ANSIScreen qw(cls);
	       my $clear_screen = cls();

	       print $clear_screen;

       The "Term::Cap" module can also get the special sequence if you want to
       deal with the low-level details of terminal control. The "Tputs" method
       returns the string for the given capability:

	       use Term::Cap;

	       $terminal = Term::Cap->Tgetent( { OSPEED => 9600 } );
	       $clear_string = $terminal->Tputs('cl');

	       print $clear_screen;

       On Windows, you can use the "Win32::Console" module. After creating an
       object for the output filehandle you want to affect, call the "Cls"
       method:

	       Win32::Console;

	       $OUT = Win32::Console->new(STD_OUTPUT_HANDLE);
	       my $clear_string = $OUT->Cls;

	       print $clear_screen;

       If you have a command-line program that does the job, you can call it
       in backticks to capture whatever it outputs so you can use it later:

	       $clear_string = `clear`;

	       print $clear_string;

   How do I get the screen size?
       If you have "Term::ReadKey" module installed from CPAN, you can use it
       to fetch the width and height in characters and in pixels:

	       use Term::ReadKey;
	       ($wchar, $hchar, $wpixels, $hpixels) = GetTerminalSize();

       This is more portable than the raw "ioctl", but not as illustrative:

	       require 'sys/ioctl.ph';
	       die "no TIOCGWINSZ " unless defined &TIOCGWINSZ;
	       open(TTY, "+</dev/tty")			   or die "No tty: $!";
	       unless (ioctl(TTY, &TIOCGWINSZ, $winsize='')) {
		       die sprintf "$0: ioctl TIOCGWINSZ (%08x: $!)\n", &TIOCGWINSZ;
	       }
	       ($row, $col, $xpixel, $ypixel) = unpack('S4', $winsize);
	       print "(row,col) = ($row,$col)";
	       print "	(xpixel,ypixel) = ($xpixel,$ypixel)" if $xpixel || $ypixel;
	       print "\n";

   How do I ask the user for a password?
       (This question has nothing to do with the web.  See a different FAQ for
       that.)

       There's an example of this in "crypt" in perlfunc).  First, you put the
       terminal into "no echo" mode, then just read the password normally.
       You may do this with an old-style "ioctl()" function, POSIX terminal
       control (see POSIX or its documentation the Camel Book), or a call to
       the stty program, with varying degrees of portability.

       You can also do this for most systems using the "Term::ReadKey" module
       from CPAN, which is easier to use and in theory more portable.

	       use Term::ReadKey;

	       ReadMode('noecho');
	       $password = ReadLine(0);

   How do I read and write the serial port?
       This depends on which operating system your program is running on.  In
       the case of Unix, the serial ports will be accessible through files in
       /dev; on other systems, device names will doubtless differ.  Several
       problem areas common to all device interaction are the following:

       lockfiles
	   Your system may use lockfiles to control multiple access.  Make
	   sure you follow the correct protocol.  Unpredictable behavior can
	   result from multiple processes reading from one device.

       open mode
	   If you expect to use both read and write operations on the device,
	   you'll have to open it for update (see "open" in perlfunc for
	   details).  You may wish to open it without running the risk of
	   blocking by using "sysopen()" and "O_RDWR|O_NDELAY|O_NOCTTY" from
	   the "Fcntl" module (part of the standard perl distribution).	 See
	   "sysopen" in perlfunc for more on this approach.

       end of line
	   Some devices will be expecting a "\r" at the end of each line
	   rather than a "\n".	In some ports of perl, "\r" and "\n" are
	   different from their usual (Unix) ASCII values of "\015" and
	   "\012".  You may have to give the numeric values you want directly,
	   using octal ("\015"), hex ("0x0D"), or as a control-character
	   specification ("\cM").

		   print DEV "atv1\012";   # wrong, for some devices
		   print DEV "atv1\015";   # right, for some devices

	   Even though with normal text files a "\n" will do the trick, there
	   is still no unified scheme for terminating a line that is portable
	   between Unix, DOS/Win, and Macintosh, except to terminate ALL line
	   ends with "\015\012", and strip what you don't need from the
	   output.  This applies especially to socket I/O and autoflushing,
	   discussed next.

       flushing output
	   If you expect characters to get to your device when you "print()"
	   them, you'll want to autoflush that filehandle.  You can use
	   "select()" and the $| variable to control autoflushing (see "$|" in
	   perlvar and "select" in perlfunc, or perlfaq5, "How do I
	   flush/unbuffer an output filehandle?	 Why must I do this?"):

		   $oldh = select(DEV);
		   $| = 1;
		   select($oldh);

	   You'll also see code that does this without a temporary variable,
	   as in

		   select((select(DEV), $| = 1)[0]);

	   Or if you don't mind pulling in a few thousand lines of code just
	   because you're afraid of a little $| variable:

		   use IO::Handle;
		   DEV->autoflush(1);

	   As mentioned in the previous item, this still doesn't work when
	   using socket I/O between Unix and Macintosh.	 You'll need to hard
	   code your line terminators, in that case.

       non-blocking input
	   If you are doing a blocking "read()" or "sysread()", you'll have to
	   arrange for an alarm handler to provide a timeout (see "alarm" in
	   perlfunc).  If you have a non-blocking open, you'll likely have a
	   non-blocking read, which means you may have to use a 4-arg
	   "select()" to determine whether I/O is ready on that device (see
	   "select" in perlfunc.

       While trying to read from his caller-id box, the notorious Jamie
       Zawinski "<jwz@netscape.com>", after much gnashing of teeth and
       fighting with "sysread", "sysopen", POSIX's "tcgetattr" business, and
       various other functions that go bump in the night, finally came up with
       this:

	       sub open_modem {
		       use IPC::Open2;
		       my $stty = `/bin/stty -g`;
		       open2( \*MODEM_IN, \*MODEM_OUT, "cu -l$modem_device -s2400 2>&1");
		       # starting cu hoses /dev/tty's stty settings, even when it has
		       # been opened on a pipe...
		       system("/bin/stty $stty");
		       $_ = <MODEM_IN>;
		       chomp;
		       if ( !m/^Connected/ ) {
			       print STDERR "$0: cu printed `$_' instead of `Connected'\n";
		       }
	       }

   How do I decode encrypted password files?
       You spend lots and lots of money on dedicated hardware, but this is
       bound to get you talked about.

       Seriously, you can't if they are Unix password files--the Unix password
       system employs one-way encryption.  It's more like hashing than
       encryption.  The best you can do is check whether something else hashes
       to the same string.  You can't turn a hash back into the original
       string. Programs like Crack can forcibly (and intelligently) try to
       guess passwords, but don't (can't) guarantee quick success.

       If you're worried about users selecting bad passwords, you should
       proactively check when they try to change their password (by modifying
       passwd(1), for example).

   How do I start a process in the background?
       (contributed by brian d foy)

       There's not a single way to run code in the background so you don't
       have to wait for it to finish before your program moves on to other
       tasks. Process management depends on your particular operating system,
       and many of the techniques are in perlipc.

       Several CPAN modules may be able to help, including "IPC::Open2" or
       "IPC::Open3", "IPC::Run", "Parallel::Jobs", "Parallel::ForkManager",
       "POE", "Proc::Background", and "Win32::Process". There are many other
       modules you might use, so check those namespaces for other options too.

       If you are on a Unix-like system, you might be able to get away with a
       system call where you put an "&" on the end of the command:

	       system("cmd &")

       You can also try using "fork", as described in perlfunc (although this
       is the same thing that many of the modules will do for you).

       STDIN, STDOUT, and STDERR are shared
	   Both the main process and the backgrounded one (the "child"
	   process) share the same STDIN, STDOUT and STDERR filehandles.  If
	   both try to access them at once, strange things can happen.	You
	   may want to close or reopen these for the child.  You can get
	   around this with "open"ing a pipe (see "open" in perlfunc) but on
	   some systems this means that the child process cannot outlive the
	   parent.

       Signals
	   You'll have to catch the SIGCHLD signal, and possibly SIGPIPE too.
	   SIGCHLD is sent when the backgrounded process finishes.  SIGPIPE is
	   sent when you write to a filehandle whose child process has closed
	   (an untrapped SIGPIPE can cause your program to silently die).
	   This is not an issue with "system("cmd&")".

       Zombies
	   You have to be prepared to "reap" the child process when it
	   finishes.

		   $SIG{CHLD} = sub { wait };

		   $SIG{CHLD} = 'IGNORE';

	   You can also use a double fork. You immediately "wait()" for your
	   first child, and the init daemon will "wait()" for your grandchild
	   once it exits.

		   unless ($pid = fork) {
		       unless (fork) {
			   exec "what you really wanna do";
			   die "exec failed!";
		       }
		       exit 0;
		   }
		   waitpid($pid, 0);

	   See "Signals" in perlipc for other examples of code to do this.
	   Zombies are not an issue with "system("prog &")".

   How do I trap control characters/signals?
       You don't actually "trap" a control character.  Instead, that character
       generates a signal which is sent to your terminal's currently
       foregrounded process group, which you then trap in your process.
       Signals are documented in "Signals" in perlipc and the section on
       "Signals" in the Camel.

       You can set the values of the %SIG hash to be the functions you want to
       handle the signal.  After perl catches the signal, it looks in %SIG for
       a key with the same name as the signal, then calls the subroutine value
       for that key.

	       # as an anonymous subroutine

	       $SIG{INT} = sub { syswrite(STDERR, "ouch\n", 5 ) };

	       # or a reference to a function

	       $SIG{INT} = \&ouch;

	       # or the name of the function as a string

	       $SIG{INT} = "ouch";

       Perl versions before 5.8 had in its C source code signal handlers which
       would catch the signal and possibly run a Perl function that you had
       set in %SIG.  This violated the rules of signal handling at that level
       causing perl to dump core. Since version 5.8.0, perl looks at %SIG
       after the signal has been caught, rather than while it is being caught.
       Previous versions of this answer were incorrect.

   How do I modify the shadow password file on a Unix system?
       If perl was installed correctly and your shadow library was written
       properly, the "getpw*()" functions described in perlfunc should in
       theory provide (read-only) access to entries in the shadow password
       file.  To change the file, make a new shadow password file (the format
       varies from system to system--see passwd for specifics) and use
       pwd_mkdb(8) to install it (see pwd_mkdb for more details).

   How do I set the time and date?
       Assuming you're running under sufficient permissions, you should be
       able to set the system-wide date and time by running the date(1)
       program.	 (There is no way to set the time and date on a per-process
       basis.)	This mechanism will work for Unix, MS-DOS, Windows, and NT;
       the VMS equivalent is "set time".

       However, if all you want to do is change your time zone, you can
       probably get away with setting an environment variable:

	       $ENV{TZ} = "MST7MDT";		  # Unixish
	       $ENV{'SYS$TIMEZONE_DIFFERENTIAL'}="-5" # vms
	       system "trn comp.lang.perl.misc";

   How can I sleep() or alarm() for under a second?
       If you want finer granularity than the 1 second that the "sleep()"
       function provides, the easiest way is to use the "select()" function as
       documented in "select" in perlfunc.  Try the "Time::HiRes" and the
       "BSD::Itimer" modules (available from CPAN, and starting from Perl 5.8
       "Time::HiRes" is part of the standard distribution).

   How can I measure time under a second?
       (contributed by brian d foy)

       The "Time::HiRes" module (part of the standard distribution as of Perl
       5.8) measures time with the "gettimeofday()" system call, which returns
       the time in microseconds since the epoch. If you can't install
       "Time::HiRes" for older Perls and you are on a Unixish system, you may
       be able to call gettimeofday(2) directly. See "syscall" in perlfunc.

   How can I do an atexit() or setjmp()/longjmp()? (Exception handling)
       You can use the "END" block to simulate "atexit()". Each package's
       "END" block is called when the program or thread ends. See the perlmod
       manpage for more details about "END" blocks.

       For example, you can use this to make sure your filter program managed
       to finish its output without filling up the disk:

	       END {
		       close(STDOUT) || die "stdout close failed: $!";
	       }

       The "END" block isn't called when untrapped signals kill the program,
       though, so if you use "END" blocks you should also use

	       use sigtrap qw(die normal-signals);

       Perl's exception-handling mechanism is its "eval()" operator.  You can
       use "eval()" as "setjmp" and "die()" as "longjmp". For details of this,
       see the section on signals, especially the time-out handler for a
       blocking "flock()" in "Signals" in perlipc or the section on "Signals"
       in Programming Perl.

       If exception handling is all you're interested in, use one of the many
       CPAN modules that handle exceptions, such as "Try::Tiny".

       If you want the "atexit()" syntax (and an "rmexit()" as well), try the
       "AtExit" module available from CPAN.

   Why doesn't my sockets program work under System V (Solaris)?  What does
       the error message "Protocol not supported" mean?
       Some Sys-V based systems, notably Solaris 2.X, redefined some of the
       standard socket constants.  Since these were constant across all
       architectures, they were often hardwired into perl code.	 The proper
       way to deal with this is to "use Socket" to get the correct values.

       Note that even though SunOS and Solaris are binary compatible, these
       values are different.  Go figure.

   How can I call my system's unique C functions from Perl?
       In most cases, you write an external module to do it--see the answer to
       "Where can I learn about linking C with Perl? [h2xs, xsubpp]".
       However, if the function is a system call, and your system supports
       "syscall()", you can use the "syscall" function (documented in
       perlfunc).

       Remember to check the modules that came with your distribution, and
       CPAN as well--someone may already have written a module to do it. On
       Windows, try "Win32::API".  On Macs, try "Mac::Carbon".	If no module
       has an interface to the C function, you can inline a bit of C in your
       Perl source with "Inline::C".

   Where do I get the include files to do ioctl() or syscall()?
       Historically, these would be generated by the "h2ph" tool, part of the
       standard perl distribution.  This program converts cpp(1) directives in
       C header files to files containing subroutine definitions, like
       &SYS_getitimer, which you can use as arguments to your functions.  It
       doesn't work perfectly, but it usually gets most of the job done.
       Simple files like errno.h, syscall.h, and socket.h were fine, but the
       hard ones like ioctl.h nearly always need to be hand-edited.  Here's
       how to install the *.ph files:

	       1.  become super-user
	       2.  cd /usr/include
	       3.  h2ph *.h */*.h

       If your system supports dynamic loading, for reasons of portability and
       sanity you probably ought to use "h2xs" (also part of the standard perl
       distribution).  This tool converts C header files to Perl extensions.
       See perlxstut for how to get started with "h2xs".

       If your system doesn't support dynamic loading, you still probably
       ought to use "h2xs".  See perlxstut and ExtUtils::MakeMaker for more
       information (in brief, just use make perl instead of a plain make to
       rebuild perl with a new static extension).

   Why do setuid perl scripts complain about kernel problems?
       Some operating systems have bugs in the kernel that make setuid scripts
       inherently insecure.  Perl gives you a number of options (described in
       perlsec) to work around such systems.

   How can I open a pipe both to and from a command?
       The "IPC::Open2" module (part of the standard perl distribution) is an
       easy-to-use approach that internally uses "pipe()", "fork()", and
       "exec()" to do the job.	Make sure you read the deadlock warnings in
       its documentation, though (see IPC::Open2).  See "Bidirectional
       Communication with Another Process" in perlipc and "Bidirectional
       Communication with Yourself" in perlipc

       You may also use the "IPC::Open3" module (part of the standard perl
       distribution), but be warned that it has a different order of arguments
       from "IPC::Open2" (see IPC::Open3).

   Why can't I get the output of a command with system()?
       You're confusing the purpose of "system()" and backticks (``).
       "system()" runs a command and returns exit status information (as a 16
       bit value: the low 7 bits are the signal the process died from, if any,
       and the high 8 bits are the actual exit value).	Backticks (``) run a
       command and return what it sent to STDOUT.

	       $exit_status   = system("mail-users");
	       $output_string = `ls`;

   How can I capture STDERR from an external command?
       There are three basic ways of running external commands:

	       system $cmd;	       # using system()
	       $output = `$cmd`;	       # using backticks (``)
	       open (PIPE, "cmd |");   # using open()

       With "system()", both STDOUT and STDERR will go the same place as the
       script's STDOUT and STDERR, unless the "system()" command redirects
       them.  Backticks and "open()" read only the STDOUT of your command.

       You can also use the "open3()" function from "IPC::Open3".  Benjamin
       Goldberg provides some sample code:

       To capture a program's STDOUT, but discard its STDERR:

	       use IPC::Open3;
	       use File::Spec;
	       use Symbol qw(gensym);
	       open(NULL, ">", File::Spec->devnull);
	       my $pid = open3(gensym, \*PH, ">&NULL", "cmd");
	       while( <PH> ) { }
	       waitpid($pid, 0);

       To capture a program's STDERR, but discard its STDOUT:

	       use IPC::Open3;
	       use File::Spec;
	       use Symbol qw(gensym);
	       open(NULL, ">", File::Spec->devnull);
	       my $pid = open3(gensym, ">&NULL", \*PH, "cmd");
	       while( <PH> ) { }
	       waitpid($pid, 0);

       To capture a program's STDERR, and let its STDOUT go to our own STDERR:

	       use IPC::Open3;
	       use Symbol qw(gensym);
	       my $pid = open3(gensym, ">&STDERR", \*PH, "cmd");
	       while( <PH> ) { }
	       waitpid($pid, 0);

       To read both a command's STDOUT and its STDERR separately, you can
       redirect them to temp files, let the command run, then read the temp
       files:

	       use IPC::Open3;
	       use Symbol qw(gensym);
	       use IO::File;
	       local *CATCHOUT = IO::File->new_tmpfile;
	       local *CATCHERR = IO::File->new_tmpfile;
	       my $pid = open3(gensym, ">&CATCHOUT", ">&CATCHERR", "cmd");
	       waitpid($pid, 0);
	       seek $_, 0, 0 for \*CATCHOUT, \*CATCHERR;
	       while( <CATCHOUT> ) {}
	       while( <CATCHERR> ) {}

       But there's no real need for both to be tempfiles... the following
       should work just as well, without deadlocking:

	       use IPC::Open3;
	       use Symbol qw(gensym);
	       use IO::File;
	       local *CATCHERR = IO::File->new_tmpfile;
	       my $pid = open3(gensym, \*CATCHOUT, ">&CATCHERR", "cmd");
	       while( <CATCHOUT> ) {}
	       waitpid($pid, 0);
	       seek CATCHERR, 0, 0;
	       while( <CATCHERR> ) {}

       And it'll be faster, too, since we can begin processing the program's
       stdout immediately, rather than waiting for the program to finish.

       With any of these, you can change file descriptors before the call:

	       open(STDOUT, ">logfile");
	       system("ls");

       or you can use Bourne shell file-descriptor redirection:

	       $output = `$cmd 2>some_file`;
	       open (PIPE, "cmd 2>some_file |");

       You can also use file-descriptor redirection to make STDERR a duplicate
       of STDOUT:

	       $output = `$cmd 2>&1`;
	       open (PIPE, "cmd 2>&1 |");

       Note that you cannot simply open STDERR to be a dup of STDOUT in your
       Perl program and avoid calling the shell to do the redirection.	This
       doesn't work:

	       open(STDERR, ">&STDOUT");
	       $alloutput = `cmd args`;	 # stderr still escapes

       This fails because the "open()" makes STDERR go to where STDOUT was
       going at the time of the "open()".  The backticks then make STDOUT go
       to a string, but don't change STDERR (which still goes to the old
       STDOUT).

       Note that you must use Bourne shell (sh(1)) redirection syntax in
       backticks, not csh(1)!  Details on why Perl's "system()" and backtick
       and pipe opens all use the Bourne shell are in the versus/csh.whynot
       article in the "Far More Than You Ever Wanted To Know" collection in
       http://www.cpan.org/misc/olddoc/FMTEYEWTK.tgz .	To capture a command's
       STDERR and STDOUT together:

	       $output = `cmd 2>&1`;			   # either with backticks
	       $pid = open(PH, "cmd 2>&1 |");		   # or with an open pipe
	       while (<PH>) { }				   #	plus a read

       To capture a command's STDOUT but discard its STDERR:

	       $output = `cmd 2>/dev/null`;		   # either with backticks
	       $pid = open(PH, "cmd 2>/dev/null |");	   # or with an open pipe
	       while (<PH>) { }				   #	plus a read

       To capture a command's STDERR but discard its STDOUT:

	       $output = `cmd 2>&1 1>/dev/null`;	   # either with backticks
	       $pid = open(PH, "cmd 2>&1 1>/dev/null |");  # or with an open pipe
	       while (<PH>) { }				   #	plus a read

       To exchange a command's STDOUT and STDERR in order to capture the
       STDERR but leave its STDOUT to come out our old STDERR:

	       $output = `cmd 3>&1 1>&2 2>&3 3>&-`;	   # either with backticks
	       $pid = open(PH, "cmd 3>&1 1>&2 2>&3 3>&-|");# or with an open pipe
	       while (<PH>) { }				   #	plus a read

       To read both a command's STDOUT and its STDERR separately, it's easiest
       to redirect them separately to files, and then read from those files
       when the program is done:

	       system("program args 1>program.stdout 2>program.stderr");

       Ordering is important in all these examples.  That's because the shell
       processes file descriptor redirections in strictly left to right order.

	       system("prog args 1>tmpfile 2>&1");
	       system("prog args 2>&1 1>tmpfile");

       The first command sends both standard out and standard error to the
       temporary file.	The second command sends only the old standard output
       there, and the old standard error shows up on the old standard out.

   Why doesn't open() return an error when a pipe open fails?
       If the second argument to a piped "open()" contains shell
       metacharacters, perl "fork()"s, then "exec()"s a shell to decode the
       metacharacters and eventually run the desired program.  If the program
       couldn't be run, it's the shell that gets the message, not Perl. All
       your Perl program can find out is whether the shell itself could be
       successfully started.  You can still capture the shell's STDERR and
       check it for error messages.  See "How can I capture STDERR from an
       external command?" elsewhere in this document, or use the "IPC::Open3"
       module.

       If there are no shell metacharacters in the argument of "open()", Perl
       runs the command directly, without using the shell, and can correctly
       report whether the command started.

   What's wrong with using backticks in a void context?
       Strictly speaking, nothing.  Stylistically speaking, it's not a good
       way to write maintainable code.	Perl has several operators for running
       external commands.  Backticks are one; they collect the output from the
       command for use in your program.	 The "system" function is another; it
       doesn't do this.

       Writing backticks in your program sends a clear message to the readers
       of your code that you wanted to collect the output of the command.  Why
       send a clear message that isn't true?

       Consider this line:

	       `cat /etc/termcap`;

       You forgot to check $? to see whether the program even ran correctly.
       Even if you wrote

	       print `cat /etc/termcap`;

       this code could and probably should be written as

	       system("cat /etc/termcap") == 0
	       or die "cat program failed!";

       which will echo the cat command's output as it is generated, instead of
       waiting until the program has completed to print it out. It also checks
       the return value.

       "system" also provides direct control over whether shell wildcard
       processing may take place, whereas backticks do not.

   How can I call backticks without shell processing?
       This is a bit tricky.  You can't simply write the command like this:

	       @ok = `grep @opts '$search_string' @filenames`;

       As of Perl 5.8.0, you can use "open()" with multiple arguments.	Just
       like the list forms of "system()" and "exec()", no shell escapes
       happen.

	       open( GREP, "-|", 'grep', @opts, $search_string, @filenames );
	       chomp(@ok = <GREP>);
	       close GREP;

       You can also:

	       my @ok = ();
	       if (open(GREP, "-|")) {
		       while (<GREP>) {
			       chomp;
			       push(@ok, $_);
		       }
		       close GREP;
	       } else {
		       exec 'grep', @opts, $search_string, @filenames;
	       }

       Just as with "system()", no shell escapes happen when you "exec()" a
       list. Further examples of this can be found in "Safe Pipe Opens" in
       perlipc.

       Note that if you're using Windows, no solution to this vexing issue is
       even possible.  Even though Perl emulates "fork()", you'll still be
       stuck, because Windows does not have an argc/argv-style API.

   Why can't my script read from STDIN after I gave it EOF (^D on Unix, ^Z on
       MS-DOS)?
       This happens only if your perl is compiled to use stdio instead of
       perlio, which is the default. Some (maybe all?) stdios set error and
       eof flags that you may need to clear. The "POSIX" module defines
       "clearerr()" that you can use.  That is the technically correct way to
       do it.  Here are some less reliable workarounds:

       1.  Try keeping around the seekpointer and go there, like this:

		   $where = tell(LOG);
		   seek(LOG, $where, 0);

       2.  If that doesn't work, try seeking to a different part of the file
	   and then back.

       3.  If that doesn't work, try seeking to a different part of the file,
	   reading something, and then seeking back.

       4.  If that doesn't work, give up on your stdio package and use
	   sysread.

   How can I convert my shell script to perl?
       Learn Perl and rewrite it.  Seriously, there's no simple converter.
       Things that are awkward to do in the shell are easy to do in Perl, and
       this very awkwardness is what would make a shell->perl converter nigh-
       on impossible to write.	By rewriting it, you'll think about what
       you're really trying to do, and hopefully will escape the shell's
       pipeline datastream paradigm, which while convenient for some matters,
       causes many inefficiencies.

   Can I use perl to run a telnet or ftp session?
       Try the "Net::FTP", "TCP::Client", and "Net::Telnet" modules (available
       from CPAN).  http://www.cpan.org/scripts/netstuff/telnet.emul.shar will
       also help for emulating the telnet protocol, but "Net::Telnet" is quite
       probably easier to use.

       If all you want to do is pretend to be telnet but don't need the
       initial telnet handshaking, then the standard dual-process approach
       will suffice:

	       use IO::Socket;		   # new in 5.004
	       $handle = IO::Socket::INET->new('www.perl.com:80')
		   or die "can't connect to port 80 on www.perl.com: $!";
	       $handle->autoflush(1);
	       if (fork()) {		   # XXX: undef means failure
		   select($handle);
		   print while <STDIN>;	   # everything from stdin to socket
	       } else {
		   print while <$handle>;  # everything from socket to stdout
	       }
	       close $handle;
	       exit;

   How can I write expect in Perl?
       Once upon a time, there was a library called chat2.pl (part of the
       standard perl distribution), which never really got finished.  If you
       find it somewhere, don't use it.	 These days, your best bet is to look
       at the Expect module available from CPAN, which also requires two other
       modules from CPAN, "IO::Pty" and "IO::Stty".

   Is there a way to hide perl's command line from programs such as "ps"?
       First of all note that if you're doing this for security reasons (to
       avoid people seeing passwords, for example) then you should rewrite
       your program so that critical information is never given as an
       argument.  Hiding the arguments won't make your program completely
       secure.

       To actually alter the visible command line, you can assign to the
       variable $0 as documented in perlvar.  This won't work on all operating
       systems, though.	 Daemon programs like sendmail place their state
       there, as in:

	       $0 = "orcus [accepting connections]";

   I {changed directory, modified my environment} in a perl script.  How come
       the change disappeared when I exited the script?	 How do I get my
       changes to be visible?
       Unix
	   In the strictest sense, it can't be done--the script executes as a
	   different process from the shell it was started from.  Changes to a
	   process are not reflected in its parent--only in any children
	   created after the change.  There is shell magic that may allow you
	   to fake it by "eval()"ing the script's output in your shell; check
	   out the comp.unix.questions FAQ for details.

   How do I close a process's filehandle without waiting for it to complete?
       Assuming your system supports such things, just send an appropriate
       signal to the process (see "kill" in perlfunc).	It's common to first
       send a TERM signal, wait a little bit, and then send a KILL signal to
       finish it off.

   How do I fork a daemon process?
       If by daemon process you mean one that's detached (disassociated from
       its tty), then the following process is reported to work on most
       Unixish systems.	 Non-Unix users should check their Your_OS::Process
       module for other solutions.

       ·   Open /dev/tty and use the TIOCNOTTY ioctl on it.  See tty for
	   details.  Or better yet, you can just use the "POSIX::setsid()"
	   function, so you don't have to worry about process groups.

       ·   Change directory to /

       ·   Reopen STDIN, STDOUT, and STDERR so they're not connected to the
	   old tty.

       ·   Background yourself like this:

		   fork && exit;

       The "Proc::Daemon" module, available from CPAN, provides a function to
       perform these actions for you.

   How do I find out if I'm running interactively or not?
       (contributed by brian d foy)

       This is a difficult question to answer, and the best answer is only a
       guess.

       What do you really want to know? If you merely want to know if one of
       your filehandles is connected to a terminal, you can try the "-t" file
       test:

	       if( -t STDOUT ) {
		       print "I'm connected to a terminal!\n";
		       }

       However, you might be out of luck if you expect that means there is a
       real person on the other side. With the "Expect" module, another
       program can pretend to be a person. The program might even come close
       to passing the Turing test.

       The "IO::Interactive" module does the best it can to give you an
       answer. Its "is_interactive" function returns an output filehandle;
       that filehandle points to standard output if the module thinks the
       session is interactive. Otherwise, the filehandle is a null handle that
       simply discards the output:

	       use IO::Interactive;

	       print { is_interactive } "I might go to standard output!\n";

       This still doesn't guarantee that a real person is answering your
       prompts or reading your output.

       If you want to know how to handle automated testing for your
       distribution, you can check the environment. The CPAN Testers, for
       instance, set the value of "AUTOMATED_TESTING":

	       unless( $ENV{AUTOMATED_TESTING} ) {
		       print "Hello interactive tester!\n";
		       }

   How do I timeout a slow event?
       Use the "alarm()" function, probably in conjunction with a signal
       handler, as documented in "Signals" in perlipc and the section on
       "Signals" in the Camel.	You may instead use the more flexible
       "Sys::AlarmCall" module available from CPAN.

       The "alarm()" function is not implemented on all versions of Windows.
       Check the documentation for your specific version of Perl.

   How do I set CPU limits?
       (contributed by Xho)

       Use the "BSD::Resource" module from CPAN. As an example:

	       use BSD::Resource;
	       setrlimit(RLIMIT_CPU,10,20) or die $!;

       This sets the soft and hard limits to 10 and 20 seconds, respectively.
       After 10 seconds of time spent running on the CPU (not "wall" time),
       the process will be sent a signal (XCPU on some systems) which, if not
       trapped, will cause the process to terminate.  If that signal is
       trapped, then after 10 more seconds (20 seconds in total) the process
       will be killed with a non-trappable signal.

       See the "BSD::Resource" and your systems documentation for the gory
       details.

   How do I avoid zombies on a Unix system?
       Use the reaper code from "Signals" in perlipc to call "wait()" when a
       SIGCHLD is received, or else use the double-fork technique described in
       "How do I start a process in the background?" in perlfaq8.

   How do I use an SQL database?
       The "DBI" module provides an abstract interface to most database
       servers and types, including Oracle, DB2, Sybase, mysql, Postgresql,
       ODBC, and flat files.  The DBI module accesses each database type
       through a database driver, or DBD.  You can see a complete list of
       available drivers on CPAN: http://www.cpan.org/modules/by-module/DBD/ .
       You can read more about DBI on http://dbi.perl.org .

       Other modules provide more specific access: "Win32::ODBC", "Alzabo",
       "iodbc", and others found on CPAN Search: http://search.cpan.org .

   How do I make a system() exit on control-C?
       You can't.  You need to imitate the "system()" call (see perlipc for
       sample code) and then have a signal handler for the INT signal that
       passes the signal on to the subprocess.	Or you can check for it:

	       $rc = system($cmd);
	       if ($rc & 127) { die "signal death" }

   How do I open a file without blocking?
       If you're lucky enough to be using a system that supports non-blocking
       reads (most Unixish systems do), you need only to use the "O_NDELAY" or
       "O_NONBLOCK" flag from the "Fcntl" module in conjunction with
       "sysopen()":

	       use Fcntl;
	       sysopen(FH, "/foo/somefile", O_WRONLY|O_NDELAY|O_CREAT, 0644)
		       or die "can't open /foo/somefile: $!":

   How do I tell the difference between errors from the shell and perl?
       (answer contributed by brian d foy)

       When you run a Perl script, something else is running the script for
       you, and that something else may output error messages.	The script
       might emit its own warnings and error messages.	Most of the time you
       cannot tell who said what.

       You probably cannot fix the thing that runs perl, but you can change
       how perl outputs its warnings by defining a custom warning and die
       functions.

       Consider this script, which has an error you may not notice
       immediately.

	       #!/usr/locl/bin/perl

	       print "Hello World\n";

       I get an error when I run this from my shell (which happens to be
       bash).  That may look like perl forgot it has a "print()" function, but
       my shebang line is not the path to perl, so the shell runs the script,
       and I get the error.

	       $ ./test
	       ./test: line 3: print: command not found

       A quick and dirty fix involves a little bit of code, but this may be
       all you need to figure out the problem.

	       #!/usr/bin/perl -w

	       BEGIN {
	       $SIG{__WARN__} = sub{ print STDERR "Perl: ", @_; };
	       $SIG{__DIE__}  = sub{ print STDERR "Perl: ", @_; exit 1};
	       }

	       $a = 1 + undef;
	       $x / 0;
	       __END__

       The perl message comes out with "Perl" in front.	 The "BEGIN" block
       works at compile time so all of the compilation errors and warnings get
       the "Perl:" prefix too.

	       Perl: Useless use of division (/) in void context at ./test line 9.
	       Perl: Name "main::a" used only once: possible typo at ./test line 8.
	       Perl: Name "main::x" used only once: possible typo at ./test line 9.
	       Perl: Use of uninitialized value in addition (+) at ./test line 8.
	       Perl: Use of uninitialized value in division (/) at ./test line 9.
	       Perl: Illegal division by zero at ./test line 9.
	       Perl: Illegal division by zero at -e line 3.

       If I don't see that "Perl:", it's not from perl.

       You could also just know all the perl errors, and although there are
       some people who may know all of them, you probably don't.  However,
       they all should be in the perldiag manpage. If you don't find the error
       in there, it probably isn't a perl error.

       Looking up every message is not the easiest way, so let perl to do it
       for you.	 Use the diagnostics pragma with turns perl's normal messages
       into longer discussions on the topic.

	       use diagnostics;

       If you don't get a paragraph or two of expanded discussion, it might
       not be perl's message.

   How do I install a module from CPAN?
       (contributed by brian d foy)

       The easiest way is to have a module also named CPAN do it for you by
       using the "cpan" command that comes with Perl. You can give it a list
       of modules to install:

	       $ cpan IO::Interactive Getopt::Whatever

       If you prefer "CPANPLUS", it's just as easy:

	       $ cpanp i IO::Interactive Getopt::Whatever

       If you want to install a distribution from the current directory, you
       can tell "CPAN.pm" to install "." (the full stop):

	       $ cpan .

       See the documentation for either of those commands to see what else you
       can do.

       If you want to try to install a distribution by yourself, resolving all
       dependencies on your own, you follow one of two possible build paths.

       For distributions that use Makefile.PL:

	       $ perl Makefile.PL
	       $ make test install

       For distributions that use Build.PL:

	       $ perl Build.PL
	       $ ./Build test
	       $ ./Build install

       Some distributions may need to link to libraries or other third-party
       code and their build and installation sequences may be more
       complicated.  Check any README or INSTALL files that you may find.

   What's the difference between require and use?
       (contributed by brian d foy)

       Perl runs "require" statement at run-time. Once Perl loads, compiles,
       and runs the file, it doesn't do anything else. The "use" statement is
       the same as a "require" run at compile-time, but Perl also calls the
       "import" method for the loaded package. These two are the same:

	       use MODULE qw(import list);

	       BEGIN {
		       require MODULE;
		       MODULE->import(import list);
		       }

       However, you can suppress the "import" by using an explicit, empty
       import list. Both of these still happen at compile-time:

	       use MODULE ();

	       BEGIN {
		       require MODULE;
		       }

       Since "use" will also call the "import" method, the actual value for
       "MODULE" must be a bareword. That is, "use" cannot load files by name,
       although "require" can:

	       require "$ENV{HOME}/lib/Foo.pm"; # no @INC searching!

       See the entry for "use" in perlfunc for more details.

   How do I keep my own module/library directory?
       When you build modules, tell Perl where to install the modules.

       If you want to install modules for your own use, the easiest way might
       be "local::lib", which you can download from CPAN. It sets various
       installation settings for you, and uses those same settings within your
       programs.

       If you want more flexibility, you need to configure your CPAN client
       for your particular situation.

       For "Makefile.PL"-based distributions, use the INSTALL_BASE option when
       generating Makefiles:

	       perl Makefile.PL INSTALL_BASE=/mydir/perl

       You can set this in your "CPAN.pm" configuration so modules
       automatically install in your private library directory when you use
       the CPAN.pm shell:

	       % cpan
	       cpan> o conf makepl_arg INSTALL_BASE=/mydir/perl
	       cpan> o conf commit

       For "Build.PL"-based distributions, use the --install_base option:

	       perl Build.PL --install_base /mydir/perl

       You can configure "CPAN.pm" to automatically use this option too:

	       % cpan
	       cpan> o conf mbuild_arg "--install_base /mydir/perl"
	       cpan> o conf commit

       INSTALL_BASE tells these tools to put your modules into
       /mydir/perl/lib/perl5.  See "How do I add a directory to my include
       path (@INC) at runtime?" for details on how to run your newly installed
       modules.

       There is one caveat with INSTALL_BASE, though, since it acts
       differently from the PREFIX and LIB settings that older versions of
       "ExtUtils::MakeMaker" advocated. INSTALL_BASE does not support
       installing modules for multiple versions of Perl or different
       architectures under the same directory. You should consider whether you
       really want that and, if you do, use the older PREFIX and LIB settings.
       See the "ExtUtils::Makemaker" documentation for more details.

   How do I add the directory my program lives in to the module/library search
       path?
       (contributed by brian d foy)

       If you know the directory already, you can add it to @INC as you would
       for any other directory. You might <use lib> if you know the directory
       at compile time:

	       use lib $directory;

       The trick in this task is to find the directory. Before your script
       does anything else (such as a "chdir"), you can get the current working
       directory with the "Cwd" module, which comes with Perl:

	       BEGIN {
		       use Cwd;
		       our $directory = cwd;
		       }

	       use lib $directory;

       You can do a similar thing with the value of $0, which holds the script
       name. That might hold a relative path, but "rel2abs" can turn it into
       an absolute path. Once you have the

	       BEGIN {
		       use File::Spec::Functions qw(rel2abs);
		       use File::Basename qw(dirname);

		       my $path	  = rel2abs( $0 );
		       our $directory = dirname( $path );
		       }

	       use lib $directory;

       The "FindBin" module, which comes with Perl, might work. It finds the
       directory of the currently running script and puts it in $Bin, which
       you can then use to construct the right library path:

	       use FindBin qw($Bin);

       You can also use "local::lib" to do much of the same thing. Install
       modules using "local::lib"'s settings then use the module in your
       program:

		use local::lib; # sets up a local lib at ~/perl5

       See the "local::lib" documentation for more details.

   How do I add a directory to my include path (@INC) at runtime?
       Here are the suggested ways of modifying your include path, including
       environment variables, run-time switches, and in-code statements:

       the "PERLLIB" environment variable
		   $ export PERLLIB=/path/to/my/dir
		   $ perl program.pl

       the "PERL5LIB" environment variable
		   $ export PERL5LIB=/path/to/my/dir
		   $ perl program.pl

       the "perl -Idir" command line flag
		   $ perl -I/path/to/my/dir program.pl

       the "lib" pragma:
		   use lib "$ENV{HOME}/myown_perllib";

       the "local::lib" module:
		   use local::lib;

		   use local::lib "~/myown_perllib";

       The last is particularly useful because it knows about machine-
       dependent architectures.	 The "lib.pm" pragmatic module was first
       included with the 5.002 release of Perl.

   What is socket.ph and where do I get it?
       It's a Perl 4 style file defining values for system networking
       constants.  Sometimes it is built using "h2ph" when Perl is installed,
       but other times it is not.  Modern programs "use Socket;" instead.

AUTHOR AND COPYRIGHT
       Copyright (c) 1997-2010 Tom Christiansen, Nathan Torkington, and other
       authors as noted. All rights reserved.

       This documentation is free; you can redistribute it and/or modify it
       under the same terms as Perl itself.

       Irrespective of its distribution, all code examples in this file are
       hereby placed into the public domain.  You are permitted and encouraged
       to use this code in your own programs for fun or for profit as you see
       fit.  A simple comment in the code giving credit would be courteous but
       is not required.

perl v5.14.2			  2011-09-26			   PERLFAQ8(1)
[top]

List of man pages available for Minix

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net