pcrepattern man page on OpenBSD

Man page or keyword search:  
man Server   11362 pages
apropos Keyword Search (all sections)
Output format
OpenBSD logo
[printable version]



PCREPATTERN(3)					   PCREPATTERN(3)

NAME
       PCRE - Perl-compatible regular expressions

PCRE REGULAR EXPRESSION DETAILS

       The  syntax and semantics of the regular expressions that are supported
       by PCRE are described in detail below. There is a quick-reference  syn-
       tax summary in the pcresyntax page. PCRE tries to match Perl syntax and
       semantics as closely as it can. PCRE  also  supports  some  alternative
       regular	expression  syntax (which does not conflict with the Perl syn-
       tax) in order to provide some compatibility with regular expressions in
       Python, .NET, and Oniguruma.

       Perl's  regular expressions are described in its own documentation, and
       regular expressions in general are covered in a number of  books,  some
       of  which  have	copious	 examples. Jeffrey Friedl's "Mastering Regular
       Expressions", published by  O'Reilly,  covers  regular  expressions  in
       great  detail.  This  description  of  PCRE's  regular  expressions  is
       intended as reference material.

       The original operation of PCRE was on strings of	 one-byte  characters.
       However,	 there is now also support for UTF-8 character strings. To use
       this, PCRE must be built to include UTF-8 support, and  you  must  call
       pcre_compile()  or  pcre_compile2() with the PCRE_UTF8 option. There is
       also a special sequence that can be given at the start of a pattern:

	 (*UTF8)

       Starting a pattern with this sequence  is  equivalent  to  setting  the
       PCRE_UTF8  option.  This	 feature  is  not Perl-compatible. How setting
       UTF-8 mode affects pattern matching  is	mentioned  in  several	places
       below.  There  is  also	a  summary of UTF-8 features in the section on
       UTF-8 support in the main pcre page.

       The remainder of this document discusses the  patterns  that  are  sup-
       ported  by  PCRE when its main matching function, pcre_exec(), is used.
       From  release  6.0,   PCRE   offers   a	 second	  matching   function,
       pcre_dfa_exec(),	 which matches using a different algorithm that is not
       Perl-compatible. Some of the features discussed below are not available
       when  pcre_dfa_exec()  is used. The advantages and disadvantages of the
       alternative function, and how it differs from the normal function,  are
       discussed in the pcrematching page.

NEWLINE CONVENTIONS

       PCRE  supports five different conventions for indicating line breaks in
       strings: a single CR (carriage return) character, a  single  LF	(line-
       feed) character, the two-character sequence CRLF, any of the three pre-
       ceding, or any Unicode newline sequence. The pcreapi page  has  further
       discussion  about newlines, and shows how to set the newline convention
       in the options arguments for the compiling and matching functions.

       It is also possible to specify a newline convention by starting a  pat-
       tern string with one of the following five sequences:

								1

PCREPATTERN(3)					   PCREPATTERN(3)

	 (*CR)	      carriage return
	 (*LF)	      linefeed
	 (*CRLF)      carriage return, followed by linefeed
	 (*ANYCRLF)   any of the three above
	 (*ANY)	      all Unicode newline sequences

       These  override	the default and the options given to pcre_compile() or
       pcre_compile2(). For example, on a Unix system where LF is the  default
       newline sequence, the pattern

	 (*CR)a.b

       changes the convention to CR. That pattern matches "a\nb" because LF is
       no longer a newline. Note that these special settings,  which  are  not
       Perl-compatible,	 are  recognized  only at the very start of a pattern,
       and that they must be in upper case. If more than one of them  is  pre-
       sent, the last one is used.

       The  newline  convention	 does  not  affect what the \R escape sequence
       matches. By default, this is any Unicode	 newline  sequence,  for  Perl
       compatibility.  However, this can be changed; see the description of \R
       in the section entitled "Newline sequences" below. A change of \R  set-
       ting can be combined with a change of newline convention.

CHARACTERS AND METACHARACTERS

       A  regular  expression  is  a pattern that is matched against a subject
       string from left to right. Most characters stand for  themselves	 in  a
       pattern,	 and  match  the corresponding characters in the subject. As a
       trivial example, the pattern

	 The quick brown fox

       matches a portion of a subject string that is identical to itself. When
       caseless	 matching is specified (the PCRE_CASELESS option), letters are
       matched independently of case. In UTF-8 mode, PCRE  always  understands
       the  concept  of case for characters whose values are less than 128, so
       caseless matching is always possible. For characters with  higher  val-
       ues,  the concept of case is supported if PCRE is compiled with Unicode
       property support, but not otherwise.   If  you  want  to	 use  caseless
       matching	 for  characters  128  and above, you must ensure that PCRE is
       compiled with Unicode property support as well as with UTF-8 support.

       The power of regular expressions comes  from  the  ability  to  include
       alternatives  and  repetitions in the pattern. These are encoded in the
       pattern by the use of metacharacters, which do not stand for themselves
       but instead are interpreted in some special way.

       There  are  two different sets of metacharacters: those that are recog-
       nized anywhere in the pattern except within square brackets, and	 those
       that  are  recognized  within square brackets. Outside square brackets,
       the metacharacters are as follows:

	 \	general escape character with several uses

								2

PCREPATTERN(3)					   PCREPATTERN(3)

	 ^	assert start of string (or line, in multiline mode)
	 $	assert end of string (or line, in multiline mode)
	 .	match any character except newline (by default)
	 [	start character class definition
	 |	start of alternative branch
	 (	start subpattern
	 )	end subpattern
	 ?	extends the meaning of (
		also 0 or 1 quantifier
		also quantifier minimizer
	 *	0 or more quantifier
	 +	1 or more quantifier
		also "possessive quantifier"
	 {	start min/max quantifier

       Part of a pattern that is in square brackets  is	 called	 a  "character
       class". In a character class the only metacharacters are:

	 \	general escape character
	 ^	negate the class, but only if the first character
	 -	indicates character range
	 [	POSIX character class (only if followed by POSIX
		  syntax)
	 ]	terminates the character class

       The  following sections describe the use of each of the metacharacters.

BACKSLASH

       The backslash character has several uses. Firstly, if it is followed by
       a  non-alphanumeric  character,	it takes away any special meaning that
       character may have. This	 use  of  backslash  as	 an  escape  character
       applies both inside and outside character classes.

       For  example,  if  you want to match a * character, you write \* in the
       pattern.	 This escaping action applies whether  or  not	the  following
       character  would	 otherwise be interpreted as a metacharacter, so it is
       always safe to precede a non-alphanumeric  with	backslash  to  specify
       that  it stands for itself. In particular, if you want to match a back-
       slash, you write \\.

       If a pattern is compiled with the PCRE_EXTENDED option,	whitespace  in
       the  pattern (other than in a character class) and characters between a
       # outside a character class and the next newline are ignored. An escap-
       ing  backslash  can  be	used to include a whitespace or # character as
       part of the pattern.

       If you want to remove the special meaning from a	 sequence  of  charac-
       ters,  you can do so by putting them between \Q and \E. This is differ-
       ent from Perl in that $ and  @  are  handled  as	 literals  in  \Q...\E
       sequences  in  PCRE, whereas in Perl, $ and @ cause variable interpola-
       tion. Note the following examples:

	 Pattern	    PCRE matches   Perl matches

								3

PCREPATTERN(3)					   PCREPATTERN(3)

	 \Qabc$xyz\E	    abc$xyz	   abc followed by the
					     contents of $xyz
	 \Qabc\$xyz\E	    abc\$xyz	   abc\$xyz
	 \Qabc\E\$\Qxyz\E   abc$xyz	   abc$xyz

       The \Q...\E sequence is recognized both inside  and  outside  character
       classes.

   Non-printing characters

       A second use of backslash provides a way of encoding non-printing char-
       acters in patterns in a visible manner. There is no restriction on  the
       appearance  of non-printing characters, apart from the binary zero that
       terminates a pattern, but when a pattern	 is  being  prepared  by  text
       editing,	 it  is	 often	easier	to  use	 one  of  the following escape
       sequences than the binary character it represents:

	 \a	   alarm, that is, the BEL character (hex 07)
	 \cx	   "control-x", where x is any character
	 \e	   escape (hex 1B)
	 \f	   formfeed (hex 0C)
	 \n	   linefeed (hex 0A)
	 \r	   carriage return (hex 0D)
	 \t	   tab (hex 09)
	 \ddd	   character with octal code ddd, or back reference
	 \xhh	   character with hex code hh
	 \x{hhh..} character with hex code hhh..

       The precise effect of \cx is as follows: if x is a lower	 case  letter,
       it  is converted to upper case. Then bit 6 of the character (hex 40) is
       inverted.  Thus \cz becomes hex 1A, but \c{ becomes hex 3B,  while  \c;
       becomes hex 7B.

       After  \x, from zero to two hexadecimal digits are read (letters can be
       in upper or lower case). Any number of hexadecimal  digits  may	appear
       between	\x{  and  },  but the value of the character code must be less
       than 256 in non-UTF-8 mode, and less than 2**31 in UTF-8 mode. That is,
       the  maximum value in hexadecimal is 7FFFFFFF. Note that this is bigger
       than the largest Unicode code point, which is 10FFFF.

       If characters other than hexadecimal digits appear between \x{  and  },
       or if there is no terminating }, this form of escape is not recognized.
       Instead, the initial \x will be	interpreted  as	 a  basic  hexadecimal
       escape,	with  no  following  digits, giving a character whose value is
       zero.

       Characters whose value is less than 256 can be defined by either of the
       two  syntaxes  for  \x. There is no difference in the way they are han-
       dled. For example, \xdc is exactly the same as \x{dc}.

       After \0 up to two further octal digits are read. If  there  are	 fewer
       than  two  digits,  just	 those	that  are  present  are used. Thus the
       sequence \0\x\07 specifies two binary zeros followed by a BEL character
       (code  value 7). Make sure you supply two digits after the initial zero

								4

PCREPATTERN(3)					   PCREPATTERN(3)

       if the pattern character that follows is itself an octal digit.

       The handling of a backslash followed by a digit other than 0 is compli-
       cated.  Outside a character class, PCRE reads it and any following dig-
       its as a decimal number. If the number is less than  10,	 or  if	 there
       have been at least that many previous capturing left parentheses in the
       expression, the entire  sequence	 is  taken  as	a  back	 reference.  A
       description  of how this works is given later, following the discussion
       of parenthesized subpatterns.

       Inside a character class, or if the decimal number is  greater  than  9
       and  there have not been that many capturing subpatterns, PCRE re-reads
       up to three octal digits following the backslash, and uses them to gen-
       erate  a data character. Any subsequent digits stand for themselves. In
       non-UTF-8 mode, the value of a character specified  in  octal  must  be
       less  than  \400.  In  UTF-8 mode, values up to \777 are permitted. For
       example:

	 \040	is another way of writing a space
	 \40	is the same, provided there are fewer than 40
		   previous capturing subpatterns
	 \7	is always a back reference
	 \11	might be a back reference, or another way of
		   writing a tab
	 \011	is always a tab
	 \0113	is a tab followed by the character "3"
	 \113	might be a back reference, otherwise the
		   character with octal code 113
	 \377	might be a back reference, otherwise
		   the byte consisting entirely of 1 bits
	 \81	is either a back reference, or a binary zero
		   followed by the two characters "8" and "1"

       Note that octal values of 100 or greater must not be  introduced	 by  a
       leading zero, because no more than three octal digits are ever read.

       All the sequences that define a single character value can be used both
       inside and outside character classes. In addition, inside  a  character
       class,  the  sequence \b is interpreted as the backspace character (hex
       08), and the sequences \R and \X are interpreted as the characters  "R"
       and  "X", respectively. Outside a character class, these sequences have
       different meanings (see below).

   Absolute and relative back references

       The sequence \g followed by an unsigned or a negative  number,  option-
       ally  enclosed  in braces, is an absolute or relative back reference. A
       named back reference can be coded as \g{name}. Back references are dis-
       cussed later, following the discussion of parenthesized subpatterns.

   Absolute and relative subroutine calls

       For  compatibility with Oniguruma, the non-Perl syntax \g followed by a
       name or a number enclosed either in angle brackets or single quotes, is

								5

PCREPATTERN(3)					   PCREPATTERN(3)

       an  alternative	syntax for referencing a subpattern as a "subroutine".
       Details are discussed later.   Note  that  \g{...}  (Perl  syntax)  and
       \g<...>	(Oniguruma  syntax)  are  not synonymous. The former is a back
       reference; the latter is a subroutine call.

   Generic character types

       Another use of backslash is for specifying generic character types. The
       following are always recognized:

	 \d	any decimal digit
	 \D	any character that is not a decimal digit
	 \h	any horizontal whitespace character
	 \H	any character that is not a horizontal whitespace character
	 \s	any whitespace character
	 \S	any character that is not a whitespace character
	 \v	any vertical whitespace character
	 \V	any character that is not a vertical whitespace character
	 \w	any "word" character
	 \W	any "non-word" character

       Each pair of escape sequences partitions the complete set of characters
       into two disjoint sets. Any given character matches one, and only  one,
       of each pair.

       These character type sequences can appear both inside and outside char-
       acter classes. They each match one character of the  appropriate	 type.
       If  the current matching point is at the end of the subject string, all
       of them fail, since there is no character to match.

       For compatibility with Perl, \s does not match the VT  character	 (code
       11).   This makes it different from the the POSIX "space" class. The \s
       characters are HT (9), LF (10), FF (12), CR (13), and  space  (32).  If
       "use locale;" is included in a Perl script, \s may match the VT charac-
       ter. In PCRE, it never does.

       In UTF-8 mode, characters with values greater than 128 never match  \d,
       \s, or \w, and always match \D, \S, and \W. This is true even when Uni-
       code character property support is available.  These  sequences	retain
       their original meanings from before UTF-8 support was available, mainly
       for efficiency reasons. Note that this also affects \b, because	it  is
       defined in terms of \w and \W.

       The sequences \h, \H, \v, and \V are Perl 5.10 features. In contrast to
       the other sequences, these do match certain high-valued	codepoints  in
       UTF-8 mode.  The horizontal space characters are:

	 U+0009	    Horizontal tab
	 U+0020	    Space
	 U+00A0	    Non-break space
	 U+1680	    Ogham space mark
	 U+180E	    Mongolian vowel separator
	 U+2000	    En quad
	 U+2001	    Em quad

								6

PCREPATTERN(3)					   PCREPATTERN(3)

	 U+2002	    En space
	 U+2003	    Em space
	 U+2004	    Three-per-em space
	 U+2005	    Four-per-em space
	 U+2006	    Six-per-em space
	 U+2007	    Figure space
	 U+2008	    Punctuation space
	 U+2009	    Thin space
	 U+200A	    Hair space
	 U+202F	    Narrow no-break space
	 U+205F	    Medium mathematical space
	 U+3000	    Ideographic space

       The vertical space characters are:

	 U+000A	    Linefeed
	 U+000B	    Vertical tab
	 U+000C	    Formfeed
	 U+000D	    Carriage return
	 U+0085	    Next line
	 U+2028	    Line separator
	 U+2029	    Paragraph separator

       A "word" character is an underscore or any character less than 256 that
       is a letter or digit. The definition of	letters	 and  digits  is  con-
       trolled	by PCRE's low-valued character tables, and may vary if locale-
       specific matching is taking place (see "Locale support" in the  pcreapi
       page).  For  example,  in  a French locale such as "fr_FR" in Unix-like
       systems, or "french" in Windows, some character codes greater than  128
       are  used for accented letters, and these are matched by \w. The use of
       locales with Unicode is discouraged.

   Newline sequences

       Outside a character class, by default, the escape sequence  \R  matches
       any Unicode newline sequence. This is a Perl 5.10 feature. In non-UTF-8
       mode \R is equivalent to the following:

	 (?>\r\n|\n|\x0b|\f|\r|\x85)

       This is an example of an "atomic group", details	 of  which  are	 given
       below.  This particular group matches either the two-character sequence
       CR followed by LF, or  one  of  the  single  characters	LF  (linefeed,
       U+000A), VT (vertical tab, U+000B), FF (formfeed, U+000C), CR (carriage
       return, U+000D), or NEL (next line, U+0085). The two-character sequence
       is treated as a single unit that cannot be split.

       In  UTF-8  mode, two additional characters whose codepoints are greater
       than 255 are added: LS (line separator, U+2028) and PS (paragraph sepa-
       rator,  U+2029).	  Unicode character property support is not needed for
       these characters to be recognized.

       It is possible to restrict \R to match only CR, LF, or CRLF (instead of
       the  complete  set  of  Unicode	line  endings)	by  setting the option

								7

PCREPATTERN(3)					   PCREPATTERN(3)

       PCRE_BSR_ANYCRLF either at compile time or when the pattern is matched.
       (BSR is an abbrevation for "backslash R".) This can be made the default
       when PCRE is built; if this is the case, the  other  behaviour  can  be
       requested  via  the  PCRE_BSR_UNICODE  option.	It is also possible to
       specify these settings by starting a pattern string  with  one  of  the
       following sequences:

	 (*BSR_ANYCRLF)	  CR, LF, or CRLF only
	 (*BSR_UNICODE)	  any Unicode newline sequence

       These  override	the default and the options given to pcre_compile() or
       pcre_compile2(), but  they  can	be  overridden	by  options  given  to
       pcre_exec() or pcre_dfa_exec(). Note that these special settings, which
       are not Perl-compatible, are recognized only at the  very  start	 of  a
       pattern,	 and that they must be in upper case. If more than one of them
       is present, the last one is used. They can be combined with a change of
       newline convention, for example, a pattern can start with:

	 (*ANY)(*BSR_ANYCRLF)

       Inside a character class, \R matches the letter "R".

   Unicode character properties

       When PCRE is built with Unicode character property support, three addi-
       tional escape sequences that match characters with specific  properties
       are  available.	 When not in UTF-8 mode, these sequences are of course
       limited to testing characters whose codepoints are less than  256,  but
       they do work in this mode.  The extra escape sequences are:

	 \p{xx}	  a character with the xx property
	 \P{xx}	  a character without the xx property
	 \X	  an extended Unicode sequence

       The  property  names represented by xx above are limited to the Unicode
       script names, the general category properties, and "Any", which matches
       any character (including newline). Other properties such as "InMusical-
       Symbols" are not currently supported by PCRE. Note  that	 \P{Any}  does
       not match any characters, so always causes a match failure.

       Sets of Unicode characters are defined as belonging to certain scripts.
       A character from one of these sets can be matched using a script	 name.
       For example:

	 \p{Greek}
	 \P{Han}

       Those  that are not part of an identified script are lumped together as
       "Common". The current list of scripts is:

       Arabic, Armenian, Avestan, Balinese, Bamum, Bengali, Bopomofo, Braille,
       Buginese,  Buhid,  Canadian_Aboriginal, Carian, Cham, Cherokee, Common,
       Coptic,	Cuneiform,  Cypriot,  Cyrillic,	 Deseret,  Devanagari,	 Egyp-
       tian_Hieroglyphs,   Ethiopic,   Georgian,  Glagolitic,  Gothic,	Greek,

								8

PCREPATTERN(3)					   PCREPATTERN(3)

       Gujarati, Gurmukhi,  Han,  Hangul,  Hanunoo,  Hebrew,  Hiragana,	 Impe-
       rial_Aramaic, Inherited, Inscriptional_Pahlavi, Inscriptional_Parthian,
       Javanese, Kaithi, Kannada, Katakana, Kayah_Li, Kharoshthi, Khmer,  Lao,
       Latin,  Lepcha,	Limbu,	Linear_B,  Lisu,  Lycian,  Lydian,  Malayalam,
       Meetei_Mayek, Mongolian, Myanmar, New_Tai_Lue, Nko, Ogham,  Old_Italic,
       Old_Persian,  Old_South_Arabian,	 Old_Turkic, Ol_Chiki, Oriya, Osmanya,
       Phags_Pa, Phoenician, Rejang, Runic,  Samaritan,	 Saurashtra,  Shavian,
       Sinhala,	 Sundanese,  Syloti_Nagri,  Syriac, Tagalog, Tagbanwa, Tai_Le,
       Tai_Tham, Tai_Viet, Tamil, Telugu,  Thaana,  Thai,  Tibetan,  Tifinagh,
       Ugaritic, Vai, Yi.

       Each  character has exactly one general category property, specified by
       a two-letter abbreviation. For compatibility with Perl, negation can be
       specified  by  including a circumflex between the opening brace and the
       property name. For example, \p{^Lu} is the same as \P{Lu}.

       If only one letter is specified with \p or \P, it includes all the gen-
       eral  category properties that start with that letter. In this case, in
       the absence of negation, the curly brackets in the escape sequence  are
       optional; these two examples have the same effect:

	 \p{L}
	 \pL

       The following general category property codes are supported:

	 C     Other
	 Cc    Control
	 Cf    Format
	 Cn    Unassigned
	 Co    Private use
	 Cs    Surrogate

	 L     Letter
	 Ll    Lower case letter
	 Lm    Modifier letter
	 Lo    Other letter
	 Lt    Title case letter
	 Lu    Upper case letter

	 M     Mark
	 Mc    Spacing mark
	 Me    Enclosing mark
	 Mn    Non-spacing mark

	 N     Number
	 Nd    Decimal number
	 Nl    Letter number
	 No    Other number

	 P     Punctuation
	 Pc    Connector punctuation
	 Pd    Dash punctuation
	 Pe    Close punctuation

								9

PCREPATTERN(3)					   PCREPATTERN(3)

	 Pf    Final punctuation
	 Pi    Initial punctuation
	 Po    Other punctuation
	 Ps    Open punctuation

	 S     Symbol
	 Sc    Currency symbol
	 Sk    Modifier symbol
	 Sm    Mathematical symbol
	 So    Other symbol

	 Z     Separator
	 Zl    Line separator
	 Zp    Paragraph separator
	 Zs    Space separator

       The  special property L& is also supported: it matches a character that
       has the Lu, Ll, or Lt property, in other words, a letter	 that  is  not
       classified as a modifier or "other".

       The  Cs	(Surrogate)  property  applies only to characters in the range
       U+D800 to U+DFFF. Such characters are not valid in UTF-8	 strings  (see
       RFC 3629) and so cannot be tested by PCRE, unless UTF-8 validity check-
       ing has been turned off (see the discussion  of	PCRE_NO_UTF8_CHECK  in
       the pcreapi page). Perl does not support the Cs property.

       The  long  synonyms  for	 property  names  that	Perl supports (such as
       \p{Letter}) are not supported by PCRE, nor is it	 permitted  to	prefix
       any of these properties with "Is".

       No character that is in the Unicode table has the Cn (unassigned) prop-
       erty.  Instead, this property is assumed for any code point that is not
       in the Unicode table.

       Specifying  caseless  matching  does not affect these escape sequences.
       For example, \p{Lu} always matches only upper case letters.

       The \X escape matches any number of Unicode  characters	that  form  an
       extended Unicode sequence. \X is equivalent to

	 (?>\PM\pM*)

       That  is,  it matches a character without the "mark" property, followed
       by zero or more characters with the "mark"  property,  and  treats  the
       sequence	 as  an	 atomic group (see below).  Characters with the "mark"
       property are typically accents that  affect  the	 preceding  character.
       None  of	 them  have  codepoints less than 256, so in non-UTF-8 mode \X
       matches any one character.

       Matching characters by Unicode property is not fast, because  PCRE  has
       to  search  a  structure	 that  contains data for over fifteen thousand
       characters. That is why the traditional escape sequences such as \d and
       \w do not use Unicode properties in PCRE.

							       10

PCREPATTERN(3)					   PCREPATTERN(3)

   Resetting the match start

       The escape sequence \K, which is a Perl 5.10 feature, causes any previ-
       ously matched characters not  to	 be  included  in  the	final  matched
       sequence. For example, the pattern:

	 foo\Kbar

       matches	"foobar",  but reports that it has matched "bar". This feature
       is similar to a lookbehind assertion (described	below).	  However,  in
       this  case, the part of the subject before the real match does not have
       to be of fixed length, as lookbehind assertions do. The use of \K  does
       not  interfere  with  the setting of captured substrings.  For example,
       when the pattern

	 (foo)\Kbar

       matches "foobar", the first substring is still set to "foo".

       Perl documents that the use  of	\K  within  assertions	is  "not  well
       defined".  In  PCRE,  \K	 is  acted upon when it occurs inside positive
       assertions, but is ignored in negative assertions.

   Simple assertions

       The final use of backslash is for certain simple assertions. An	asser-
       tion  specifies a condition that has to be met at a particular point in
       a match, without consuming any characters from the subject string.  The
       use  of subpatterns for more complicated assertions is described below.
       The backslashed assertions are:

	 \b	matches at a word boundary
	 \B	matches when not at a word boundary
	 \A	matches at the start of the subject
	 \Z	matches at the end of the subject
		 also matches before a newline at the end of the subject
	 \z	matches only at the end of the subject
	 \G	matches at the first matching position in the subject

       These assertions may not appear in character classes (but note that  \b
       has a different meaning, namely the backspace character, inside a char-
       acter class).

       A word boundary is a position in the subject string where  the  current
       character  and  the previous character do not both match \w or \W (i.e.
       one matches \w and the other matches \W), or the start or  end  of  the
       string if the first or last character matches \w, respectively. Neither
       PCRE nor Perl has a separte "start of word" or "end  of	word"  metase-
       quence.	However,  whatever follows \b normally determines which it is.
       For example, the fragment \ba matches "a" at the start of a word.

       The \A, \Z, and \z assertions differ from  the  traditional  circumflex
       and dollar (described in the next section) in that they only ever match
       at the very start and end of the subject string, whatever  options  are

							       11

PCREPATTERN(3)					   PCREPATTERN(3)

       set.  Thus,  they are independent of multiline mode. These three asser-
       tions are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options, which
       affect  only the behaviour of the circumflex and dollar metacharacters.
       However, if the startoffset argument of pcre_exec() is non-zero,	 indi-
       cating that matching is to start at a point other than the beginning of
       the subject, \A can never match. The difference between \Z  and	\z  is
       that \Z matches before a newline at the end of the string as well as at
       the very end, whereas \z matches only at the end.

       The \G assertion is true only when the current matching position is  at
       the  start point of the match, as specified by the startoffset argument
       of pcre_exec(). It differs from \A when the  value  of  startoffset  is
       non-zero.  By calling pcre_exec() multiple times with appropriate argu-
       ments, you can mimic Perl's /g option, and it is in this kind of imple-
       mentation where \G can be useful.

       Note,  however,	that  PCRE's interpretation of \G, as the start of the
       current match, is subtly different from Perl's, which defines it as the
       end  of	the  previous  match. In Perl, these can be different when the
       previously matched string was empty. Because PCRE does just  one	 match
       at a time, it cannot reproduce this behaviour.

       If  all	the alternatives of a pattern begin with \G, the expression is
       anchored to the starting match position, and the "anchored" flag is set
       in the compiled regular expression.

CIRCUMFLEX AND DOLLAR

       Outside a character class, in the default matching mode, the circumflex
       character is an assertion that is true only  if	the  current  matching
       point  is  at the start of the subject string. If the startoffset argu-
       ment of pcre_exec() is non-zero, circumflex  can	 never	match  if  the
       PCRE_MULTILINE  option  is  unset. Inside a character class, circumflex
       has an entirely different meaning (see below).

       Circumflex need not be the first character of the pattern if  a	number
       of  alternatives are involved, but it should be the first thing in each
       alternative in which it appears if the pattern is ever  to  match  that
       branch.	If all possible alternatives start with a circumflex, that is,
       if the pattern is constrained to match only at the start	 of  the  sub-
       ject,  it  is  said  to be an "anchored" pattern. (There are also other
       constructs that can cause a pattern to be anchored.)

       A dollar character is an assertion that is true	only  if  the  current
       matching	 point	is  at	the  end of the subject string, or immediately
       before a newline at the end of the string (by default). Dollar need not
       be  the	last  character of the pattern if a number of alternatives are
       involved, but it should be the last item in  any	 branch	 in  which  it
       appears. Dollar has no special meaning in a character class.

       The  meaning  of	 dollar	 can be changed so that it matches only at the
       very end of the string, by setting the  PCRE_DOLLAR_ENDONLY  option  at
       compile time. This does not affect the \Z assertion.

							       12

PCREPATTERN(3)					   PCREPATTERN(3)

       The meanings of the circumflex and dollar characters are changed if the
       PCRE_MULTILINE option is set. When  this	 is  the  case,	 a  circumflex
       matches	immediately after internal newlines as well as at the start of
       the subject string. It does not match after a  newline  that  ends  the
       string.	A dollar matches before any newlines in the string, as well as
       at the very end, when PCRE_MULTILINE is set. When newline is  specified
       as  the	two-character  sequence CRLF, isolated CR and LF characters do
       not indicate newlines.

       For example, the pattern /^abc$/ matches the subject string  "def\nabc"
       (where  \n  represents a newline) in multiline mode, but not otherwise.
       Consequently, patterns that are anchored in single  line	 mode  because
       all  branches  start  with  ^ are not anchored in multiline mode, and a
       match for circumflex is	possible  when	the  startoffset  argument  of
       pcre_exec()  is	non-zero. The PCRE_DOLLAR_ENDONLY option is ignored if
       PCRE_MULTILINE is set.

       Note that the sequences \A, \Z, and \z can be used to match  the	 start
       and  end of the subject in both modes, and if all branches of a pattern
       start with \A it is always anchored, whether or not  PCRE_MULTILINE  is
       set.

FULL STOP (PERIOD, DOT)

       Outside a character class, a dot in the pattern matches any one charac-
       ter in the subject string except (by default) a character  that	signi-
       fies  the  end  of  a line. In UTF-8 mode, the matched character may be
       more than one byte long.

       When a line ending is defined as a single character, dot never  matches
       that  character; when the two-character sequence CRLF is used, dot does
       not match CR if it is immediately followed  by  LF,  but	 otherwise  it
       matches	all characters (including isolated CRs and LFs). When any Uni-
       code line endings are being recognized, dot does not match CR or LF  or
       any of the other line ending characters.

       The  behaviour  of  dot	with regard to newlines can be changed. If the
       PCRE_DOTALL option is set, a dot matches	 any  one  character,  without
       exception. If the two-character sequence CRLF is present in the subject
       string, it takes two dots to match it.

       The handling of dot is entirely independent of the handling of  circum-
       flex  and  dollar,  the	only relationship being that they both involve
       newlines. Dot has no special meaning in a character class.

MATCHING A SINGLE BYTE

       Outside a character class, the escape sequence \C matches any one byte,
       both  in	 and  out  of  UTF-8 mode. Unlike a dot, it always matches any
       line-ending characters. The feature is provided in  Perl	 in  order  to
       match  individual bytes in UTF-8 mode. Because it breaks up UTF-8 char-
       acters into individual bytes, what remains in the string may be a  mal-
       formed  UTF-8  string.  For this reason, the \C escape sequence is best
       avoided.

							       13

PCREPATTERN(3)					   PCREPATTERN(3)

       PCRE does not allow \C to appear in  lookbehind	assertions  (described
       below),	because	 in UTF-8 mode this would make it impossible to calcu-
       late the length of the lookbehind.

SQUARE BRACKETS AND CHARACTER CLASSES

       An opening square bracket introduces a character class, terminated by a
       closing square bracket. A closing square bracket on its own is not spe-
       cial by default.	 However, if the PCRE_JAVASCRIPT_COMPAT option is set,
       a lone closing square bracket causes a compile-time error. If a closing
       square bracket is required as a member of the class, it should  be  the
       first data character in the class (after an initial circumflex, if pre-
       sent) or escaped with a backslash.

       A character class matches a single character in the subject.  In	 UTF-8
       mode, the character may be more than one byte long. A matched character
       must be in the set of characters defined by the class, unless the first
       character  in  the  class definition is a circumflex, in which case the
       subject character must not be in the set defined by  the	 class.	 If  a
       circumflex  is actually required as a member of the class, ensure it is
       not the first character, or escape it with a backslash.

       For example, the character class [aeiou] matches any lower case	vowel,
       while  [^aeiou]	matches	 any character that is not a lower case vowel.
       Note that a circumflex is just a convenient notation for specifying the
       characters  that	 are in the class by enumerating those that are not. A
       class that starts with a circumflex is not an assertion; it still  con-
       sumes  a	 character  from the subject string, and therefore it fails if
       the current pointer is at the end of the string.

       In UTF-8 mode, characters with values greater than 255 can be  included
       in  a  class as a literal string of bytes, or by using the \x{ escaping
       mechanism.

       When caseless matching is set, any letters in a	class  represent  both
       their  upper  case  and lower case versions, so for example, a caseless
       [aeiou] matches "A" as well as "a", and a caseless  [^aeiou]  does  not
       match  "A", whereas a caseful version would. In UTF-8 mode, PCRE always
       understands the concept of case for characters whose  values  are  less
       than  128, so caseless matching is always possible. For characters with
       higher values, the concept of case is supported	if  PCRE  is  compiled
       with  Unicode  property support, but not otherwise.  If you want to use
       caseless matching in UTF8-mode for characters 128 and above,  you  must
       ensure  that  PCRE is compiled with Unicode property support as well as
       with UTF-8 support.

       Characters that might indicate line breaks are  never  treated  in  any
       special	way  when  matching  character	classes,  whatever line-ending
       sequence is in  use,  and  whatever  setting  of	 the  PCRE_DOTALL  and
       PCRE_MULTILINE options is used. A class such as [^a] always matches one
       of these characters.

       The minus (hyphen) character can be used to specify a range of  charac-
       ters  in	 a  character  class.  For  example,  [d-m] matches any letter

							       14

PCREPATTERN(3)					   PCREPATTERN(3)

       between d and m, inclusive. If a	 minus	character  is  required	 in  a
       class,  it  must	 be  escaped  with a backslash or appear in a position
       where it cannot be interpreted as indicating a range, typically as  the
       first or last character in the class.

       It is not possible to have the literal character "]" as the end charac-
       ter of a range. A pattern such as [W-]46] is interpreted as a class  of
       two  characters ("W" and "-") followed by a literal string "46]", so it
       would match "W46]" or "-46]". However, if the "]"  is  escaped  with  a
       backslash  it is interpreted as the end of range, so [W-\]46] is inter-
       preted as a class containing a range followed by two other  characters.
       The  octal or hexadecimal representation of "]" can also be used to end
       a range.

       Ranges operate in the collating sequence of character values. They  can
       also   be  used	for  characters	 specified  numerically,  for  example
       [\000-\037]. In UTF-8 mode, ranges can include characters whose	values
       are greater than 255, for example [\x{100}-\x{2ff}].

       If a range that includes letters is used when caseless matching is set,
       it matches the letters in either case. For example, [W-c] is equivalent
       to  [][\\^_`wxyzabc],  matched  caselessly,  and	 in non-UTF-8 mode, if
       character tables for a French locale are in  use,  [\xc8-\xcb]  matches
       accented	 E  characters in both cases. In UTF-8 mode, PCRE supports the
       concept of case for characters with values greater than 128  only  when
       it is compiled with Unicode property support.

       The  character types \d, \D, \p, \P, \s, \S, \w, and \W may also appear
       in a character class, and add the characters that  they	match  to  the
       class. For example, [\dABCDEF] matches any hexadecimal digit. A circum-
       flex can conveniently be used with the upper case  character  types  to
       specify	a  more	 restricted  set of characters than the matching lower
       case type. For example, the class [^\W_] matches any letter  or	digit,
       but not underscore.

       The  only  metacharacters  that are recognized in character classes are
       backslash, hyphen (only where it can be	interpreted  as	 specifying  a
       range),	circumflex  (only  at the start), opening square bracket (only
       when it can be interpreted as introducing a POSIX class name - see  the
       next  section),	and  the  terminating closing square bracket. However,
       escaping other non-alphanumeric characters does no harm.

POSIX CHARACTER CLASSES

       Perl supports the POSIX notation for character classes. This uses names
       enclosed	 by  [: and :] within the enclosing square brackets. PCRE also
       supports this notation. For example,

	 [01[:alpha:]%]

       matches "0", "1", any alphabetic character, or "%". The supported class
       names are

	 alnum	  letters and digits

							       15

PCREPATTERN(3)					   PCREPATTERN(3)

	 alpha	  letters
	 ascii	  character codes 0 - 127
	 blank	  space or tab only
	 cntrl	  control characters
	 digit	  decimal digits (same as \d)
	 graph	  printing characters, excluding space
	 lower	  lower case letters
	 print	  printing characters, including space
	 punct	  printing characters, excluding letters and digits
	 space	  white space (not quite the same as \s)
	 upper	  upper case letters
	 word	  "word" characters (same as \w)
	 xdigit	  hexadecimal digits

       The  "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13),
       and space (32). Notice that this list includes the VT  character	 (code
       11). This makes "space" different to \s, which does not include VT (for
       Perl compatibility).

       The name "word" is a Perl extension, and "blank"	 is  a	GNU  extension
       from  Perl  5.8. Another Perl extension is negation, which is indicated
       by a ^ character after the colon. For example,

	 [12[:^digit:]]

       matches "1", "2", or any non-digit. PCRE (and Perl) also recognize  the
       POSIX syntax [.ch.] and [=ch=] where "ch" is a "collating element", but
       these are not supported, and an error is given if they are encountered.

       In UTF-8 mode, characters with values greater than 128 do not match any
       of the POSIX character classes.

VERTICAL BAR

       Vertical bar characters are used to separate alternative patterns.  For
       example, the pattern

	 gilbert|sullivan

       matches	either "gilbert" or "sullivan". Any number of alternatives may
       appear, and an empty  alternative  is  permitted	 (matching  the	 empty
       string). The matching process tries each alternative in turn, from left
       to right, and the first one that succeeds is used. If the  alternatives
       are  within a subpattern (defined below), "succeeds" means matching the
       rest of the main pattern as well as the alternative in the  subpattern.

INTERNAL OPTION SETTING

       The  settings  of  the  PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
       PCRE_EXTENDED options (which are Perl-compatible) can be	 changed  from
       within  the  pattern  by	 a  sequence  of  Perl option letters enclosed
       between "(?" and ")".  The option letters are

	 i  for PCRE_CASELESS

							       16

PCREPATTERN(3)					   PCREPATTERN(3)

	 m  for PCRE_MULTILINE
	 s  for PCRE_DOTALL
	 x  for PCRE_EXTENDED

       For example, (?im) sets caseless, multiline matching. It is also possi-
       ble to unset these options by preceding the letter with a hyphen, and a
       combined setting and unsetting such as (?im-sx), which sets  PCRE_CASE-
       LESS  and PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED,
       is also permitted. If a	letter	appears	 both  before  and  after  the
       hyphen, the option is unset.

       The  PCRE-specific options PCRE_DUPNAMES, PCRE_UNGREEDY, and PCRE_EXTRA
       can be changed in the same way as the Perl-compatible options by	 using
       the characters J, U and X respectively.

       When  one  of  these  option  changes occurs at top level (that is, not
       inside subpattern parentheses), the change applies to the remainder  of
       the pattern that follows. If the change is placed right at the start of
       a pattern, PCRE extracts it into the global options (and it will there-
       fore show up in data extracted by the pcre_fullinfo() function).

       An  option  change  within a subpattern (see below for a description of
       subpatterns) affects only that part of the current pattern that follows
       it, so

	 (a(?i)b)c

       matches abc and aBc and no other strings (assuming PCRE_CASELESS is not
       used).  By this means, options can be made to have  different  settings
       in  different parts of the pattern. Any changes made in one alternative
       do carry on into subsequent branches within the	same  subpattern.  For
       example,

	 (a(?i)b|c)

       matches	"ab",  "aB",  "c",  and "C", even though when matching "C" the
       first branch is abandoned before the option setting.  This  is  because
       the  effects  of option settings happen at compile time. There would be
       some very weird behaviour otherwise.

       Note: There are other PCRE-specific options that	 can  be  set  by  the
       application  when  the  compile	or match functions are called. In some
       cases the pattern can contain special leading sequences such as (*CRLF)
       to  override  what  the application has set or what has been defaulted.
       Details are given in the section entitled  "Newline  sequences"	above.
       There  is  also	the  (*UTF8)  leading sequence that can be used to set
       UTF-8 mode; this is equivalent to setting the PCRE_UTF8 option.

SUBPATTERNS

       Subpatterns are delimited by parentheses (round brackets), which can be
       nested.	Turning part of a pattern into a subpattern does two things:

       1. It localizes a set of alternatives. For example, the pattern

							       17

PCREPATTERN(3)					   PCREPATTERN(3)

	 cat(aract|erpillar|)

       matches	one  of the words "cat", "cataract", or "caterpillar". Without
       the parentheses, it would match	"cataract",  "erpillar"	 or  an	 empty
       string.

       2.  It  sets  up	 the  subpattern as a capturing subpattern. This means
       that, when the whole pattern  matches,  that  portion  of  the  subject
       string that matched the subpattern is passed back to the caller via the
       ovector argument of pcre_exec(). Opening parentheses are	 counted  from
       left  to	 right	(starting  from 1) to obtain numbers for the capturing
       subpatterns.

       For example, if the string "the red king" is matched against  the  pat-
       tern

	 the ((red|white) (king|queen))

       the captured substrings are "red king", "red", and "king", and are num-
       bered 1, 2, and 3, respectively.

       The fact that plain parentheses fulfil  two  functions  is  not	always
       helpful.	  There are often times when a grouping subpattern is required
       without a capturing requirement. If an opening parenthesis is  followed
       by  a question mark and a colon, the subpattern does not do any captur-
       ing, and is not counted when computing the  number  of  any  subsequent
       capturing  subpatterns. For example, if the string "the white queen" is
       matched against the pattern

	 the ((?:red|white) (king|queen))

       the captured substrings are "white queen" and "queen", and are numbered
       1 and 2. The maximum number of capturing subpatterns is 65535.

       As  a  convenient shorthand, if any option settings are required at the
       start of a non-capturing subpattern,  the  option  letters  may	appear
       between the "?" and the ":". Thus the two patterns

	 (?i:saturday|sunday)
	 (?:(?i)saturday|sunday)

       match exactly the same set of strings. Because alternative branches are
       tried from left to right, and options are not reset until  the  end  of
       the  subpattern is reached, an option setting in one branch does affect
       subsequent branches, so the above patterns match "SUNDAY"  as  well  as
       "Saturday".

DUPLICATE SUBPATTERN NUMBERS

       Perl 5.10 introduced a feature whereby each alternative in a subpattern
       uses the same numbers for its capturing parentheses. Such a  subpattern
       starts  with (?| and is itself a non-capturing subpattern. For example,
       consider this pattern:

							       18

PCREPATTERN(3)					   PCREPATTERN(3)

	 (?|(Sat)ur|(Sun))day

       Because the two alternatives are inside a (?| group, both sets of  cap-
       turing  parentheses  are	 numbered one. Thus, when the pattern matches,
       you can look at captured substring number  one,	whichever  alternative
       matched.	 This  construct  is useful when you want to capture part, but
       not all, of one of a number of alternatives. Inside a (?| group, paren-
       theses  are  numbered as usual, but the number is reset at the start of
       each branch. The numbers of any capturing buffers that follow the  sub-
       pattern	start after the highest number used in any branch. The follow-
       ing example is taken from the Perl documentation.  The  numbers	under-
       neath show in which buffer the captured content will be stored.

	 # before  ---------------branch-reset----------- after
	 / ( a )  (?| x ( y ) z | (p (q) r) | (t) u (v) ) ( z ) /x
	 # 1		2	  2  3	      2	    3	  4

       A  back	reference  to a numbered subpattern uses the most recent value
       that is set for that number by any subpattern.  The  following  pattern
       matches "abcabc" or "defdef":

	 /(?|(abc)|(def))\1/

       In  contrast, a recursive or "subroutine" call to a numbered subpattern
       always refers to the first one in the pattern with  the	given  number.
       The following pattern matches "abcabc" or "defabc":

	 /(?|(abc)|(def))(?1)/

       If  a condition test for a subpattern's having matched refers to a non-
       unique number, the test is true if any of the subpatterns of that  num-
       ber have matched.

       An  alternative approach to using this "branch reset" feature is to use
       duplicate named subpatterns, as described in the next section.

NAMED SUBPATTERNS

       Identifying capturing parentheses by number is simple, but  it  can  be
       very  hard  to keep track of the numbers in complicated regular expres-
       sions. Furthermore, if an  expression  is  modified,  the  numbers  may
       change.	To help with this difficulty, PCRE supports the naming of sub-
       patterns. This feature was not added to Perl until release 5.10. Python
       had  the	 feature earlier, and PCRE introduced it at release 4.0, using
       the Python syntax. PCRE now supports both the Perl and the Python  syn-
       tax.  Perl  allows  identically	numbered subpatterns to have different
       names, but PCRE does not.

       In PCRE, a subpattern can be named in one of three  ways:  (?<name>...)
       or  (?'name'...)	 as in Perl, or (?P<name>...) as in Python. References
       to capturing parentheses from other parts of the pattern, such as  back
       references,  recursion,	and conditions, can be made by name as well as
       by number.

							       19

PCREPATTERN(3)					   PCREPATTERN(3)

       Names consist of up to  32  alphanumeric	 characters  and  underscores.
       Named  capturing	 parentheses  are  still  allocated numbers as well as
       names, exactly as if the names were not present. The PCRE API  provides
       function calls for extracting the name-to-number translation table from
       a compiled pattern. There is also a convenience function for extracting
       a captured substring by name.

       By  default, a name must be unique within a pattern, but it is possible
       to relax this constraint by setting the PCRE_DUPNAMES option at compile
       time.  (Duplicate  names are also always permitted for subpatterns with
       the same number, set up as described in the previous  section.)	Dupli-
       cate  names  can	 be useful for patterns where only one instance of the
       named parentheses can match. Suppose you want to match the  name	 of  a
       weekday,	 either as a 3-letter abbreviation or as the full name, and in
       both cases you want to extract the abbreviation. This pattern (ignoring
       the line breaks) does the job:

	 (?<DN>Mon|Fri|Sun)(?:day)?|
	 (?<DN>Tue)(?:sday)?|
	 (?<DN>Wed)(?:nesday)?|
	 (?<DN>Thu)(?:rsday)?|
	 (?<DN>Sat)(?:urday)?

       There  are  five capturing substrings, but only one is ever set after a
       match.  (An alternative way of solving this problem is to use a "branch
       reset" subpattern, as described in the previous section.)

       The  convenience	 function  for extracting the data by name returns the
       substring for the first (and in this example, the only)	subpattern  of
       that  name  that	 matched.  This saves searching to find which numbered
       subpattern it was.

       If you make a back reference to	a  non-unique  named  subpattern  from
       elsewhere  in the pattern, the one that corresponds to the first occur-
       rence of the name is used. In the absence of duplicate numbers (see the
       previous	 section) this is the one with the lowest number. If you use a
       named reference in a condition test (see the section  about  conditions
       below),	either	to check whether a subpattern has matched, or to check
       for recursion, all subpatterns with the same name are  tested.  If  the
       condition  is  true for any one of them, the overall condition is true.
       This is the same behaviour as testing by number. For further details of
       the interfaces for handling named subpatterns, see the pcreapi documen-
       tation.

       Warning: You cannot use different names to distinguish between two sub-
       patterns	 with  the same number because PCRE uses only the numbers when
       matching. For this reason, an error is given at compile time if differ-
       ent  names  are given to subpatterns with the same number. However, you
       can give the same name to subpatterns with the same number,  even  when
       PCRE_DUPNAMES is not set.

REPETITION

       Repetition  is  specified  by  quantifiers, which can follow any of the

							       20

PCREPATTERN(3)					   PCREPATTERN(3)

       following items:

	 a literal data character
	 the dot metacharacter
	 the \C escape sequence
	 the \X escape sequence (in UTF-8 mode with Unicode properties)
	 the \R escape sequence
	 an escape such as \d that matches a single character
	 a character class
	 a back reference (see next section)
	 a parenthesized subpattern (unless it is an assertion)
	 a recursive or "subroutine" call to a subpattern

       The general repetition quantifier specifies a minimum and maximum  num-
       ber  of	permitted matches, by giving the two numbers in curly brackets
       (braces), separated by a comma. The numbers must be  less  than	65536,
       and the first must be less than or equal to the second. For example:

	 z{2,4}

       matches	"zz",  "zzz",  or  "zzzz". A closing brace on its own is not a
       special character. If the second number is omitted, but	the  comma  is
       present,	 there	is  no upper limit; if the second number and the comma
       are both omitted, the quantifier specifies an exact number of  required
       matches. Thus

	 [aeiou]{3,}

       matches at least 3 successive vowels, but may match many more, while

	 \d{8}

       matches	exactly	 8  digits. An opening curly bracket that appears in a
       position where a quantifier is not allowed, or one that does not	 match
       the  syntax of a quantifier, is taken as a literal character. For exam-
       ple, {,6} is not a quantifier, but a literal string of four characters.

       In  UTF-8  mode,	 quantifiers  apply to UTF-8 characters rather than to
       individual bytes. Thus, for example, \x{100}{2} matches two UTF-8 char-
       acters, each of which is represented by a two-byte sequence. Similarly,
       when Unicode property support is available, \X{3} matches three Unicode
       extended	 sequences,  each of which may be several bytes long (and they
       may be of different lengths).

       The quantifier {0} is permitted, causing the expression to behave as if
       the previous item and the quantifier were not present. This may be use-
       ful for subpatterns that are referenced as subroutines  from  elsewhere
       in the pattern. Items other than subpatterns that have a {0} quantifier
       are omitted from the compiled pattern.

       For convenience, the three most common quantifiers have	single-charac-
       ter abbreviations:

	 *    is equivalent to {0,}

							       21

PCREPATTERN(3)					   PCREPATTERN(3)

	 +    is equivalent to {1,}
	 ?    is equivalent to {0,1}

       It  is  possible	 to construct infinite loops by following a subpattern
       that can match no characters with a quantifier that has no upper limit,
       for example:

	 (a?)*

       Earlier versions of Perl and PCRE used to give an error at compile time
       for such patterns. However, because there are cases where this  can  be
       useful,	such  patterns	are now accepted, but if any repetition of the
       subpattern does in fact match no characters, the loop is forcibly  bro-
       ken.

       By  default,  the quantifiers are "greedy", that is, they match as much
       as possible (up to the maximum  number  of  permitted  times),  without
       causing	the  rest of the pattern to fail. The classic example of where
       this gives problems is in trying to match comments in C programs. These
       appear  between	/*  and	 */ and within the comment, individual * and /
       characters may appear. An attempt to match C comments by	 applying  the
       pattern

	 /\*.*\*/

       to the string

	 /* first comment */  not comment  /* second comment */

       fails,  because it matches the entire string owing to the greediness of
       the .*  item.

       However, if a quantifier is followed by a question mark, it  ceases  to
       be greedy, and instead matches the minimum number of times possible, so
       the pattern

	 /\*.*?\*/

       does the right thing with the C comments. The meaning  of  the  various
       quantifiers  is	not  otherwise	changed,  just the preferred number of
       matches.	 Do not confuse this use of question mark with its  use	 as  a
       quantifier  in its own right. Because it has two uses, it can sometimes
       appear doubled, as in

	 \d??\d

       which matches one digit by preference, but can match two if that is the
       only way the rest of the pattern matches.

       If  the PCRE_UNGREEDY option is set (an option that is not available in
       Perl), the quantifiers are not greedy by default, but  individual  ones
       can  be	made  greedy  by following them with a question mark. In other
       words, it inverts the default behaviour.

							       22

PCREPATTERN(3)					   PCREPATTERN(3)

       When a parenthesized subpattern is quantified  with  a  minimum	repeat
       count  that is greater than 1 or with a limited maximum, more memory is
       required for the compiled pattern, in proportion to  the	 size  of  the
       minimum or maximum.

       If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equiv-
       alent to Perl's /s) is set, thus allowing the dot  to  match  newlines,
       the  pattern  is	 implicitly anchored, because whatever follows will be
       tried against every character position in the subject string, so	 there
       is  no  point  in  retrying the overall match at any position after the
       first. PCRE normally treats such a pattern as though it	were  preceded
       by \A.

       In  cases  where	 it  is known that the subject string contains no new-
       lines, it is worth setting PCRE_DOTALL in order to  obtain  this	 opti-
       mization, or alternatively using ^ to indicate anchoring explicitly.

       However,	 there is one situation where the optimization cannot be used.
       When .*	is inside capturing parentheses that are the subject of a back
       reference elsewhere in the pattern, a match at the start may fail where
       a later one succeeds. Consider, for example:

	 (.*)abc\1

       If the subject is "xyz123abc123" the match point is the fourth  charac-
       ter. For this reason, such a pattern is not implicitly anchored.

       When a capturing subpattern is repeated, the value captured is the sub-
       string that matched the final iteration. For example, after

	 (tweedle[dume]{3}\s*)+

       has matched "tweedledum tweedledee" the value of the captured substring
       is  "tweedledee".  However,  if there are nested capturing subpatterns,
       the corresponding captured values may have been set in previous	itera-
       tions. For example, after

	 /(a|(b))+/

       matches "aba" the value of the second captured substring is "b".

ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS

       With  both  maximizing ("greedy") and minimizing ("ungreedy" or "lazy")
       repetition, failure of what follows normally causes the	repeated  item
       to  be  re-evaluated to see if a different number of repeats allows the
       rest of the pattern to match. Sometimes it is useful to	prevent	 this,
       either  to  change the nature of the match, or to cause it fail earlier
       than it otherwise might, when the author of the pattern knows there  is
       no point in carrying on.

       Consider,  for  example, the pattern \d+foo when applied to the subject
       line

							       23

PCREPATTERN(3)					   PCREPATTERN(3)

	 123456bar

       After matching all 6 digits and then failing to match "foo", the normal
       action  of  the matcher is to try again with only 5 digits matching the
       \d+ item, and then with	4,  and	 so  on,  before  ultimately  failing.
       "Atomic	grouping"  (a  term taken from Jeffrey Friedl's book) provides
       the means for specifying that once a subpattern has matched, it is  not
       to be re-evaluated in this way.

       If  we  use atomic grouping for the previous example, the matcher gives
       up immediately on failing to match "foo" the first time.	 The  notation
       is a kind of special parenthesis, starting with (?> as in this example:

	 (?>\d+)foo

       This kind of parenthesis "locks up" the	part of the  pattern  it  con-
       tains  once  it	has matched, and a failure further into the pattern is
       prevented from backtracking into it. Backtracking past it  to  previous
       items, however, works as normal.

       An  alternative	description  is that a subpattern of this type matches
       the string of characters that an	 identical  standalone	pattern	 would
       match, if anchored at the current point in the subject string.

       Atomic grouping subpatterns are not capturing subpatterns. Simple cases
       such as the above example can be thought of as a maximizing repeat that
       must  swallow  everything  it can. So, while both \d+ and \d+? are pre-
       pared to adjust the number of digits they match in order	 to  make  the
       rest of the pattern match, (?>\d+) can only match an entire sequence of
       digits.

       Atomic groups in general can of course contain arbitrarily  complicated
       subpatterns,  and  can  be  nested. However, when the subpattern for an
       atomic group is just a single repeated item, as in the example above, a
       simpler	notation,  called  a "possessive quantifier" can be used. This
       consists of an additional + character  following	 a  quantifier.	 Using
       this notation, the previous example can be rewritten as

	 \d++foo

       Note that a possessive quantifier can be used with an entire group, for
       example:

	 (abc|xyz){2,3}+

       Possessive  quantifiers	are  always  greedy;  the   setting   of   the
       PCRE_UNGREEDY option is ignored. They are a convenient notation for the
       simpler forms of atomic group. However, there is no difference  in  the
       meaning	of  a  possessive  quantifier and the equivalent atomic group,
       though there may be a performance  difference;  possessive  quantifiers
       should be slightly faster.

       The  possessive	quantifier syntax is an extension to the Perl 5.8 syn-
       tax.  Jeffrey Friedl originated the idea (and the name)	in  the	 first

							       24

PCREPATTERN(3)					   PCREPATTERN(3)

       edition of his book. Mike McCloskey liked it, so implemented it when he
       built Sun's Java package, and PCRE copied it from there. It  ultimately
       found its way into Perl at release 5.10.

       PCRE has an optimization that automatically "possessifies" certain sim-
       ple pattern constructs. For example, the sequence  A+B  is  treated  as
       A++B  because  there is no point in backtracking into a sequence of A's
       when B must follow.

       When a pattern contains an unlimited repeat inside  a  subpattern  that
       can  itself  be	repeated  an  unlimited number of times, the use of an
       atomic group is the only way to avoid some  failing  matches  taking  a
       very long time indeed. The pattern

	 (\D+|<\d+>)*[!?]

       matches	an  unlimited number of substrings that either consist of non-
       digits, or digits enclosed in <>, followed by either ! or  ?.  When  it
       matches, it runs quickly. However, if it is applied to

	 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

       it  takes  a  long  time	 before reporting failure. This is because the
       string can be divided between the internal \D+ repeat and the  external
       *  repeat  in  a	 large	number of ways, and all have to be tried. (The
       example uses [!?] rather than a single character at  the	 end,  because
       both  PCRE  and	Perl have an optimization that allows for fast failure
       when a single character is used. They remember the last single  charac-
       ter  that  is required for a match, and fail early if it is not present
       in the string.) If the pattern is changed so that  it  uses  an	atomic
       group, like this:

	 ((?>\D+)|<\d+>)*[!?]

       sequences  of non-digits cannot be broken, and failure happens quickly.

BACK REFERENCES

       Outside a character class, a backslash followed by a digit greater than
       0 (and possibly further digits) is a back reference to a capturing sub-
       pattern earlier (that is, to its left) in the pattern,  provided	 there
       have been that many previous capturing left parentheses.

       However, if the decimal number following the backslash is less than 10,
       it is always taken as a back reference, and causes  an  error  only  if
       there  are  not that many capturing left parentheses in the entire pat-
       tern. In other words, the parentheses that are referenced need  not  be
       to  the left of the reference for numbers less than 10. A "forward back
       reference" of this type can make sense when a  repetition  is  involved
       and  the	 subpattern to the right has participated in an earlier itera-
       tion.

       It is not possible to have a numerical "forward back  reference"	 to  a
       subpattern  whose  number  is  10  or  more using this syntax because a

							       25

PCREPATTERN(3)					   PCREPATTERN(3)

       sequence such as \50 is interpreted as a character  defined  in	octal.
       See the subsection entitled "Non-printing characters" above for further
       details of the handling of digits following a backslash.	 There	is  no
       such  problem  when named parentheses are used. A back reference to any
       subpattern is possible using named parentheses (see below).

       Another way of avoiding the ambiguity inherent in  the  use  of	digits
       following a backslash is to use the \g escape sequence, which is a fea-
       ture introduced in Perl 5.10.  This  escape  must  be  followed	by  an
       unsigned	 number	 or  a negative number, optionally enclosed in braces.
       These examples are all identical:

	 (ring), \1
	 (ring), \g1
	 (ring), \g{1}

       An unsigned number specifies an absolute reference without the  ambigu-
       ity that is present in the older syntax. It is also useful when literal
       digits follow the reference. A negative number is a relative reference.
       Consider this example:

	 (abc(def)ghi)\g{-1}

       The sequence \g{-1} is a reference to the most recently started captur-
       ing subpattern before \g, that is, is it equivalent to  \2.  Similarly,
       \g{-2} would be equivalent to \1. The use of relative references can be
       helpful in long patterns, and also in  patterns	that  are  created  by
       joining together fragments that contain references within themselves.

       A  back	reference matches whatever actually matched the capturing sub-
       pattern in the current subject string, rather  than  anything  matching
       the subpattern itself (see "Subpatterns as subroutines" below for a way
       of doing that). So the pattern

	 (sens|respons)e and \1ibility

       matches "sense and sensibility" and "response and responsibility",  but
       not  "sense and responsibility". If caseful matching is in force at the
       time of the back reference, the case of letters is relevant. For	 exam-
       ple,

	 ((?i)rah)\s+\1

       matches	"rah  rah"  and	 "RAH RAH", but not "RAH rah", even though the
       original capturing subpattern is matched caselessly.

       There are several different ways of writing back	 references  to	 named
       subpatterns.  The  .NET syntax \k{name} and the Perl syntax \k<name> or
       \k'name' are supported, as is the Python syntax (?P=name). Perl	5.10's
       unified back reference syntax, in which \g can be used for both numeric
       and named references, is also supported. We  could  rewrite  the	 above
       example in any of the following ways:

	 (?<p1>(?i)rah)\s+\k<p1>

							       26

PCREPATTERN(3)					   PCREPATTERN(3)

	 (?'p1'(?i)rah)\s+\k{p1}
	 (?P<p1>(?i)rah)\s+(?P=p1)
	 (?<p1>(?i)rah)\s+\g{p1}

       A  subpattern  that  is	referenced  by	name may appear in the pattern
       before or after the reference.

       There may be more than one back reference to the same subpattern. If  a
       subpattern  has	not actually been used in a particular match, any back
       references to it always fail by default. For example, the pattern

	 (a|(bc))\2

       always fails if it starts to match "a" rather than  "bc".  However,  if
       the PCRE_JAVASCRIPT_COMPAT option is set at compile time, a back refer-
       ence to an unset value matches an empty string.

       Because there may be many capturing parentheses in a pattern, all  dig-
       its  following a backslash are taken as part of a potential back refer-
       ence number.  If the pattern continues with  a  digit  character,  some
       delimiter  must	be  used  to  terminate	 the  back  reference.	If the
       PCRE_EXTENDED option is set, this can be whitespace. Otherwise, the \g{
       syntax or an empty comment (see "Comments" below) can be used.

   Recursive back references

       A  back reference that occurs inside the parentheses to which it refers
       fails when the subpattern is first used, so, for example,  (a\1)	 never
       matches.	  However,  such references can be useful inside repeated sub-
       patterns. For example, the pattern

	 (a|b\1)+

       matches any number of "a"s and also "aba", "ababbaa" etc. At each iter-
       ation  of  the  subpattern,  the	 back  reference matches the character
       string corresponding to the previous iteration. In order	 for  this  to
       work,  the  pattern must be such that the first iteration does not need
       to match the back reference. This can be done using alternation, as  in
       the example above, or by a quantifier with a minimum of zero.

       Back  references of this type cause the group that they reference to be
       treated as an atomic group.  Once the whole group has been  matched,  a
       subsequent  matching  failure cannot cause backtracking into the middle
       of the group.

ASSERTIONS

       An assertion is a test on the characters	 following  or	preceding  the
       current	matching  point that does not actually consume any characters.
       The simple assertions coded as \b, \B, \A, \G, \Z,  \z,	^  and	$  are
       described above.

       More  complicated  assertions  are  coded as subpatterns. There are two
       kinds: those that look ahead of the current  position  in  the  subject

							       27

PCREPATTERN(3)					   PCREPATTERN(3)

       string,	and  those  that  look	behind	it. An assertion subpattern is
       matched in the normal way, except that it does not  cause  the  current
       matching position to be changed.

       Assertion  subpatterns  are  not	 capturing subpatterns, and may not be
       repeated, because it makes no sense to assert the  same	thing  several
       times.  If  any kind of assertion contains capturing subpatterns within
       it, these are counted for the purposes of numbering the capturing  sub-
       patterns in the whole pattern.  However, substring capturing is carried
       out only for positive assertions, because it does not  make  sense  for
       negative assertions.

   Lookahead assertions

       Lookahead assertions start with (?= for positive assertions and (?! for
       negative assertions. For example,

	 \w+(?=;)

       matches a word followed by a semicolon, but does not include the	 semi-
       colon in the match, and

	 foo(?!bar)

       matches	any  occurrence	 of  "foo" that is not followed by "bar". Note
       that the apparently similar pattern

	 (?!foo)bar

       does not find an occurrence of "bar"  that  is  preceded	 by  something
       other  than "foo"; it finds any occurrence of "bar" whatsoever, because
       the assertion (?!foo) is always true when the next three characters are
       "bar". A lookbehind assertion is needed to achieve the other effect.

       If you want to force a matching failure at some point in a pattern, the
       most convenient way to do it is	with  (?!)  because  an	 empty	string
       always  matches, so an assertion that requires there not to be an empty
       string must always fail.	  The  Perl  5.10  backtracking	 control  verb
       (*FAIL) or (*F) is essentially a synonym for (?!).

   Lookbehind assertions

       Lookbehind  assertions start with (?<= for positive assertions and (?<!
       for negative assertions. For example,

	 (?<!foo)bar

       does find an occurrence of "bar" that is not  preceded  by  "foo".  The
       contents	 of  a	lookbehind  assertion are restricted such that all the
       strings it matches must have a fixed length. However, if there are sev-
       eral  top-level	alternatives,  they  do	 not all have to have the same
       fixed length. Thus

	 (?<=bullock|donkey)

							       28

PCREPATTERN(3)					   PCREPATTERN(3)

       is permitted, but

	 (?<!dogs?|cats?)

       causes an error at compile time. Branches that match  different	length
       strings	are permitted only at the top level of a lookbehind assertion.
       This is an extension compared with Perl (5.8 and 5.10), which  requires
       all branches to match the same length of string. An assertion such as

	 (?<=ab(c|de))

       is  not	permitted,  because  its single top-level branch can match two
       different lengths, but it is acceptable to PCRE if rewritten to use two
       top-level branches:

	 (?<=abc|abde)

       In some cases, the Perl 5.10 escape sequence \K (see above) can be used
       instead of  a  lookbehind  assertion  to	 get  round  the  fixed-length
       restriction.

       The  implementation  of lookbehind assertions is, for each alternative,
       to temporarily move the current position back by the fixed  length  and
       then try to match. If there are insufficient characters before the cur-
       rent position, the assertion fails.

       PCRE does not allow the \C escape (which matches a single byte in UTF-8
       mode)  to appear in lookbehind assertions, because it makes it impossi-
       ble to calculate the length of the lookbehind. The \X and  \R  escapes,
       which can match different numbers of bytes, are also not permitted.

       "Subroutine"  calls  (see below) such as (?2) or (?&X) are permitted in
       lookbehinds, as long as the subpattern matches a	 fixed-length  string.
       Recursion, however, is not supported.

       Possessive  quantifiers	can  be	 used  in  conjunction with lookbehind
       assertions to specify efficient matching of fixed-length strings at the
       end of subject strings. Consider a simple pattern such as

	 abcd$

       when  applied  to  a  long string that does not match. Because matching
       proceeds from left to right, PCRE will look for each "a" in the subject
       and  then  see  if what follows matches the rest of the pattern. If the
       pattern is specified as

	 ^.*abcd$

       the initial .* matches the entire string at first, but when this	 fails
       (because there is no following "a"), it backtracks to match all but the
       last character, then all but the last two characters, and so  on.  Once
       again  the search for "a" covers the entire string, from right to left,
       so we are no better off. However, if the pattern is written as

							       29

PCREPATTERN(3)					   PCREPATTERN(3)

	 ^.*+(?<=abcd)

       there can be no backtracking for the .*+ item; it can  match  only  the
       entire  string.	The subsequent lookbehind assertion does a single test
       on the last four characters. If it fails, the match fails  immediately.
       For  long  strings, this approach makes a significant difference to the
       processing time.

   Using multiple assertions

       Several assertions (of any sort) may occur in succession. For example,

	 (?<=\d{3})(?<!999)foo

       matches "foo" preceded by three digits that are not "999". Notice  that
       each  of	 the  assertions is applied independently at the same point in
       the subject string. First there is a  check  that  the  previous	 three
       characters  are	all  digits,  and  then there is a check that the same
       three characters are not "999".	This pattern does not match "foo" pre-
       ceded  by  six  characters,  the first of which are digits and the last
       three of which are not "999". For example, it  doesn't  match  "123abc-
       foo". A pattern to do that is

	 (?<=\d{3}...)(?<!999)foo

       This  time  the	first assertion looks at the preceding six characters,
       checking that the first three are digits, and then the second assertion
       checks that the preceding three characters are not "999".

       Assertions can be nested in any combination. For example,

	 (?<=(?<!foo)bar)baz

       matches	an occurrence of "baz" that is preceded by "bar" which in turn
       is not preceded by "foo", while

	 (?<=\d{3}(?!999)...)foo

       is another pattern that matches "foo" preceded by three digits and  any
       three characters that are not "999".

CONDITIONAL SUBPATTERNS

       It  is possible to cause the matching process to obey a subpattern con-
       ditionally or to choose between two alternative subpatterns,  depending
       on  the result of an assertion, or whether a specific capturing subpat-
       tern has already been matched. The two possible	forms  of  conditional
       subpattern are:

	 (?(condition)yes-pattern)
	 (?(condition)yes-pattern|no-pattern)

       If  the	condition is satisfied, the yes-pattern is used; otherwise the
       no-pattern  (if	present)  is  used.  If	 there	are  more   than   two

							       30

PCREPATTERN(3)					   PCREPATTERN(3)

       alternatives in the subpattern, a compile-time error occurs.

       There  are  four	 kinds of condition: references to subpatterns, refer-
       ences to recursion, a pseudo-condition called DEFINE, and assertions.

   Checking for a used subpattern by number

       If the text between the parentheses consists of a sequence  of  digits,
       the condition is true if a capturing subpattern of that number has pre-
       viously matched. If there is more than one  capturing  subpattern  with
       the  same  number  (see	the earlier section about duplicate subpattern
       numbers), the condition is true if any of them have been set. An alter-
       native  notation is to precede the digits with a plus or minus sign. In
       this case, the subpattern number is relative rather than absolute.  The
       most  recently opened parentheses can be referenced by (?(-1), the next
       most recent by (?(-2), and so on. In looping  constructs	 it  can  also
       make  sense  to	refer  to  subsequent  groups  with constructs such as
       (?(+2).

       Consider the following pattern, which  contains	non-significant	 white
       space to make it more readable (assume the PCRE_EXTENDED option) and to
       divide it into three parts for ease of discussion:

	 ( \( )?    [^()]+    (?(1) \) )

       The first part matches an optional opening  parenthesis,	 and  if  that
       character is present, sets it as the first captured substring. The sec-
       ond part matches one or more characters that are not  parentheses.  The
       third part is a conditional subpattern that tests whether the first set
       of parentheses matched or not. If they did, that is, if subject started
       with an opening parenthesis, the condition is true, and so the yes-pat-
       tern is executed and a  closing	parenthesis  is	 required.  Otherwise,
       since  no-pattern  is  not  present, the subpattern matches nothing. In
       other words,  this  pattern  matches  a	sequence  of  non-parentheses,
       optionally enclosed in parentheses.

       If  you	were  embedding	 this pattern in a larger one, you could use a
       relative reference:

	 ...other stuff... ( \( )?    [^()]+	(?(-1) \) ) ...

       This makes the fragment independent of the parentheses  in  the	larger
       pattern.

   Checking for a used subpattern by name

       Perl  uses  the	syntax	(?(<name>)...) or (?('name')...) to test for a
       used subpattern by name. For compatibility  with	 earlier  versions  of
       PCRE,  which  had this facility before Perl, the syntax (?(name)...) is
       also recognized. However, there is a possible ambiguity with this  syn-
       tax,  because  subpattern  names	 may  consist entirely of digits. PCRE
       looks first for a named subpattern; if it cannot find one and the  name
       consists	 entirely  of digits, PCRE looks for a subpattern of that num-
       ber, which must be greater  than	 zero.	Using  subpattern  names  that

							       31

PCREPATTERN(3)					   PCREPATTERN(3)

       consist entirely of digits is not recommended.

       Rewriting the above example to use a named subpattern gives this:

	 (?<OPEN> \( )?	   [^()]+    (?(<OPEN>) \) )

       If  the	name used in a condition of this kind is a duplicate, the test
       is applied to all subpatterns of the same name, and is true if any  one
       of them has matched.

   Checking for pattern recursion

       If the condition is the string (R), and there is no subpattern with the
       name R, the condition is true if a recursive call to the whole  pattern
       or any subpattern has been made. If digits or a name preceded by amper-
       sand follow the letter R, for example:

	 (?(R3)...) or (?(R&name)...)

       the condition is true if the most recent recursion is into a subpattern
       whose number or name is given. This condition does not check the entire
       recursion stack. If the name used in a condition	 of  this  kind	 is  a
       duplicate, the test is applied to all subpatterns of the same name, and
       is true if any one of them is the most recent recursion.

       At "top level", all these recursion test	 conditions  are  false.   The
       syntax for recursive patterns is described below.

   Defining subpatterns for use by reference only

       If  the	condition  is  the string (DEFINE), and there is no subpattern
       with the name DEFINE, the condition is  always  false.  In  this	 case,
       there  may  be  only  one  alternative  in the subpattern. It is always
       skipped if control reaches this point  in  the  pattern;	 the  idea  of
       DEFINE  is that it can be used to define "subroutines" that can be ref-
       erenced from elsewhere. (The use of "subroutines" is described  below.)
       For  example,  a pattern to match an IPv4 address could be written like
       this (ignore whitespace and line breaks):

	 (?(DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d) )
	 \b (?&byte) (\.(?&byte)){3} \b

       The first part of the pattern is a DEFINE group inside which a  another
       group  named "byte" is defined. This matches an individual component of
       an IPv4 address (a number less than 256). When  matching	 takes	place,
       this  part  of  the pattern is skipped because DEFINE acts like a false
       condition. The rest of the pattern uses references to the  named	 group
       to  match the four dot-separated components of an IPv4 address, insist-
       ing on a word boundary at each end.

   Assertion conditions

       If the condition is not in any of the above  formats,  it  must	be  an
       assertion.   This may be a positive or negative lookahead or lookbehind

							       32

PCREPATTERN(3)					   PCREPATTERN(3)

       assertion. Consider  this  pattern,  again  containing  non-significant
       white space, and with the two alternatives on the second line:

	 (?(?=[^a-z]*[a-z])
	 \d{2}-[a-z]{3}-\d{2}  |  \d{2}-\d{2}-\d{2} )

       The  condition  is  a  positive	lookahead  assertion  that  matches an
       optional sequence of non-letters followed by a letter. In other	words,
       it  tests  for the presence of at least one letter in the subject. If a
       letter is found, the subject is matched against the first  alternative;
       otherwise  it  is  matched  against  the	 second.  This pattern matches
       strings in one of the two forms dd-aaa-dd or dd-dd-dd,  where  aaa  are
       letters and dd are digits.

COMMENTS

       The  sequence (?# marks the start of a comment that continues up to the
       next closing parenthesis. Nested parentheses  are  not  permitted.  The
       characters  that make up a comment play no part in the pattern matching
       at all.

       If the PCRE_EXTENDED option is set, an unescaped # character outside  a
       character  class	 introduces  a	comment	 that continues to immediately
       after the next newline in the pattern.

RECURSIVE PATTERNS

       Consider the problem of matching a string in parentheses, allowing  for
       unlimited  nested  parentheses.	Without the use of recursion, the best
       that can be done is to use a pattern that  matches  up  to  some	 fixed
       depth  of  nesting.  It	is not possible to handle an arbitrary nesting
       depth.

       For some time, Perl has provided a facility that allows regular expres-
       sions  to recurse (amongst other things). It does this by interpolating
       Perl code in the expression at run time, and the code can refer to  the
       expression itself. A Perl pattern using code interpolation to solve the
       parentheses problem can be created like this:

	 $re = qr{\( (?: (?>[^()]+) | (?p{$re}) )* \)}x;

       The (?p{...}) item interpolates Perl code at run time, and in this case
       refers recursively to the pattern in which it appears.

       Obviously, PCRE cannot support the interpolation of Perl code. Instead,
       it supports special syntax for recursion of  the	 entire	 pattern,  and
       also  for  individual  subpattern  recursion. After its introduction in
       PCRE and Python, this kind of  recursion	 was  subsequently  introduced
       into Perl at release 5.10.

       A  special  item	 that consists of (? followed by a number greater than
       zero and a closing parenthesis is a recursive call of the subpattern of
       the  given  number, provided that it occurs inside that subpattern. (If
       not, it is  a  "subroutine"  call,  which  is  described	 in  the  next

							       33

PCREPATTERN(3)					   PCREPATTERN(3)

       section.)  The  special	item  (?R)  or (?0) is a recursive call of the
       entire regular expression.

       This PCRE pattern solves the nested  parentheses	 problem  (assume  the
       PCRE_EXTENDED option is set so that white space is ignored):

	 \( ( [^()]++ | (?R) )* \)

       First  it matches an opening parenthesis. Then it matches any number of
       substrings which can either be a	 sequence  of  non-parentheses,	 or  a
       recursive  match	 of the pattern itself (that is, a correctly parenthe-
       sized substring).  Finally there is a closing parenthesis. Note the use
       of a possessive quantifier to avoid backtracking into sequences of non-
       parentheses.

       If this were part of a larger pattern, you would not  want  to  recurse
       the entire pattern, so instead you could use this:

	 ( \( ( [^()]++ | (?1) )* \) )

       We  have	 put the pattern into parentheses, and caused the recursion to
       refer to them instead of the whole pattern.

       In a larger pattern,  keeping  track  of	 parenthesis  numbers  can  be
       tricky.	This  is made easier by the use of relative references (a Perl
       5.10 feature).  Instead of (?1) in the  pattern	above  you  can	 write
       (?-2) to refer to the second most recently opened parentheses preceding
       the recursion. In other	words,	a  negative  number  counts  capturing
       parentheses leftwards from the point at which it is encountered.

       It  is  also  possible  to refer to subsequently opened parentheses, by
       writing references such as (?+2). However, these	 cannot	 be  recursive
       because	the  reference	is  not inside the parentheses that are refer-
       enced. They are always "subroutine" calls, as  described	 in  the  next
       section.

       An  alternative	approach is to use named parentheses instead. The Perl
       syntax for this is (?&name); PCRE's earlier syntax  (?P>name)  is  also
       supported. We could rewrite the above example as follows:

	 (?<pn> \( ( [^()]++ | (?&pn) )* \) )

       If  there  is more than one subpattern with the same name, the earliest
       one is used.

       This particular example pattern that we have been looking  at  contains
       nested unlimited repeats, and so the use of a possessive quantifier for
       matching strings of non-parentheses is important when applying the pat-
       tern  to	 strings  that do not match. For example, when this pattern is
       applied to

	 (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()

       it yields "no match" quickly. However, if a  possessive	quantifier  is

							       34

PCREPATTERN(3)					   PCREPATTERN(3)

       not  used, the match runs for a very long time indeed because there are
       so many different ways the + and * repeats can carve  up	 the  subject,
       and all have to be tested before failure can be reported.

       At  the	end  of a match, the values of capturing parentheses are those
       from the outermost level. If you want to obtain intermediate values,  a
       callout	function can be used (see below and the pcrecallout documenta-
       tion). If the pattern above is matched against

	 (ab(cd)ef)

       the value for the inner capturing parentheses  (numbered	 2)  is	 "ef",
       which  is the last value taken on at the top level. If a capturing sub-
       pattern is not matched at the top level, its final value is unset, even
       if it is (temporarily) set at a deeper level.

       If  there are more than 15 capturing parentheses in a pattern, PCRE has
       to obtain extra memory to store data during a recursion, which it  does
       by using pcre_malloc, freeing it via pcre_free afterwards. If no memory
       can be obtained, the match fails with the PCRE_ERROR_NOMEMORY error.

       Do not confuse the (?R) item with the condition (R),  which  tests  for
       recursion.   Consider  this pattern, which matches text in angle brack-
       ets, allowing for arbitrary nesting. Only digits are allowed in	nested
       brackets	 (that is, when recursing), whereas any characters are permit-
       ted at the outer level.

	 < (?: (?(R) \d++  | [^<>]*+) | (?R)) * >

       In this pattern, (?(R) is the start of a conditional  subpattern,  with
       two  different  alternatives for the recursive and non-recursive cases.
       The (?R) item is the actual recursive call.

   Recursion difference from Perl

       In PCRE (like Python, but unlike Perl), a recursive subpattern call  is
       always treated as an atomic group. That is, once it has matched some of
       the subject string, it is never re-entered, even if it contains untried
       alternatives  and  there	 is a subsequent matching failure. This can be
       illustrated by the following pattern, which purports to match a	palin-
       dromic  string  that contains an odd number of characters (for example,
       "a", "aba", "abcba", "abcdcba"):

	 ^(.|(.)(?1)\2)$

       The idea is that it either matches a single character, or two identical
       characters  surrounding	a sub-palindrome. In Perl, this pattern works;
       in PCRE it does not if the pattern is  longer  than  three  characters.
       Consider the subject string "abcba":

       At  the	top level, the first character is matched, but as it is not at
       the end of the string, the first alternative fails; the second alterna-
       tive is taken and the recursion kicks in. The recursive call to subpat-
       tern 1 successfully matches the next character ("b").  (Note  that  the

							       35

PCREPATTERN(3)					   PCREPATTERN(3)

       beginning and end of line tests are not part of the recursion).

       Back  at	 the top level, the next character ("c") is compared with what
       subpattern 2 matched, which was "a". This fails. Because the  recursion
       is  treated  as	an atomic group, there are now no backtracking points,
       and so the entire match fails. (Perl is able, at	 this  point,  to  re-
       enter  the  recursion  and try the second alternative.) However, if the
       pattern is written with the alternatives in the other order, things are
       different:

	 ^((.)(?1)\2|.)$

       This  time,  the recursing alternative is tried first, and continues to
       recurse until it runs out of characters, at which point	the  recursion
       fails.  But  this  time	we  do	have another alternative to try at the
       higher level. That is the big difference:  in  the  previous  case  the
       remaining alternative is at a deeper recursion level, which PCRE cannot
       use.

       To change the pattern so that matches all palindromic strings, not just
       those  with  an	odd number of characters, it is tempting to change the
       pattern to this:

	 ^((.)(?1)\2|.?)$

       Again, this works in Perl, but not in PCRE, and for  the	 same  reason.
       When  a	deeper	recursion has matched a single character, it cannot be
       entered again in order to match an empty string.	 The  solution	is  to
       separate	 the two cases, and write out the odd and even cases as alter-
       natives at the higher level:

	 ^(?:((.)(?1)\2|)|((.)(?3)\4|.))

       If you want to match typical palindromic phrases, the  pattern  has  to
       ignore all non-word characters, which can be done like this:

	 ^\W*+(?:((.)\W*+(?1)\W*+\2|)|((.)\W*+(?3)\W*+\4|\W*+.\W*+))\W*+$

       If run with the PCRE_CASELESS option, this pattern matches phrases such
       as "A man, a plan, a canal: Panama!" and it works well in both PCRE and
       Perl.  Note the use of the possessive quantifier *+ to avoid backtrack-
       ing into sequences of non-word characters. Without this, PCRE  takes  a
       great  deal  longer  (ten  times or more) to match typical phrases, and
       Perl takes so long that you think it has gone into a loop.

       WARNING: The palindrome-matching patterns above work only if  the  sub-
       ject  string  does not start with a palindrome that is shorter than the
       entire string.  For example, although "abcba" is correctly matched,  if
       the  subject  is "ababa", PCRE finds the palindrome "aba" at the start,
       then fails at top level because the end of the string does not  follow.
       Once  again, it cannot jump back into the recursion to try other alter-
       natives, so the entire match fails.

							       36

PCREPATTERN(3)					   PCREPATTERN(3)

SUBPATTERNS AS SUBROUTINES

       If the syntax for a recursive subpattern reference (either by number or
       by  name)  is used outside the parentheses to which it refers, it oper-
       ates like a subroutine in a programming language. The "called"  subpat-
       tern may be defined before or after the reference. A numbered reference
       can be absolute or relative, as in these examples:

	 (...(absolute)...)...(?2)...
	 (...(relative)...)...(?-1)...
	 (...(?+1)...(relative)...

       An earlier example pointed out that the pattern

	 (sens|respons)e and \1ibility

       matches "sense and sensibility" and "response and responsibility",  but
       not "sense and responsibility". If instead the pattern

	 (sens|respons)e and (?1)ibility

       is  used, it does match "sense and responsibility" as well as the other
       two strings. Another example is	given  in  the	discussion  of	DEFINE
       above.

       Like  recursive	subpatterns, a subroutine call is always treated as an
       atomic group. That is, once it has matched some of the subject  string,
       it  is  never  re-entered, even if it contains untried alternatives and
       there is a subsequent matching failure. Any capturing parentheses  that
       are  set	 during	 the  subroutine  call revert to their previous values
       afterwards.

       When a subpattern is used as a subroutine, processing options  such  as
       case-independence are fixed when the subpattern is defined. They cannot
       be changed for different calls. For example, consider this pattern:

	 (abc)(?i:(?-1))

       It matches "abcabc". It does not match "abcABC" because the  change  of
       processing option does not affect the called subpattern.

ONIGURUMA SUBROUTINE SYNTAX

       For  compatibility with Oniguruma, the non-Perl syntax \g followed by a
       name or a number enclosed either in angle brackets or single quotes, is
       an  alternative	syntax	for  referencing a subpattern as a subroutine,
       possibly recursively. Here are two of the examples used above,  rewrit-
       ten using this syntax:

	 (?<pn> \( ( (?>[^()]+) | \g<pn> )* \) )
	 (sens|respons)e and \g'1'ibility

       PCRE  supports  an extension to Oniguruma: if a number is preceded by a
       plus or a minus sign it is taken as a relative reference. For example:

							       37

PCREPATTERN(3)					   PCREPATTERN(3)

	 (abc)(?i:\g<-1>)

       Note that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are  not
       synonymous.  The former is a back reference; the latter is a subroutine
       call.

CALLOUTS

       Perl has a feature whereby using the sequence (?{...}) causes arbitrary
       Perl  code to be obeyed in the middle of matching a regular expression.
       This makes it possible, amongst other things, to extract different sub-
       strings that match the same pair of parentheses when there is a repeti-
       tion.

       PCRE provides a similar feature, but of course it cannot obey arbitrary
       Perl code. The feature is called "callout". The caller of PCRE provides
       an external function by putting its entry point in the global  variable
       pcre_callout.   By default, this variable contains NULL, which disables
       all calling out.

       Within a regular expression, (?C) indicates the	points	at  which  the
       external	 function  is  to be called. If you want to identify different
       callout points, you can put a number less than 256 after the letter  C.
       The  default  value is zero.  For example, this pattern has two callout
       points:

	 (?C1)abc(?C2)def

       If the PCRE_AUTO_CALLOUT flag is passed to pcre_compile(), callouts are
       automatically  installed	 before each item in the pattern. They are all
       numbered 255.

       During matching, when PCRE reaches a callout point (and pcre_callout is
       set),  the  external function is called. It is provided with the number
       of the callout, the position in the pattern, and, optionally, one  item
       of  data	 originally supplied by the caller of pcre_exec(). The callout
       function may cause matching to proceed, to backtrack, or to fail	 alto-
       gether. A complete description of the interface to the callout function
       is given in the pcrecallout documentation.

BACKTRACKING CONTROL

       Perl 5.10 introduced a number of "Special Backtracking Control  Verbs",
       which are described in the Perl documentation as "experimental and sub-
       ject to change or removal in a future version of Perl". It goes	on  to
       say:  "Their usage in production code should be noted to avoid problems
       during upgrades." The same remarks apply to the PCRE features described
       in this section.

       Since  these  verbs  are	 specifically related to backtracking, most of
       them can be  used  only	when  the  pattern  is	to  be	matched	 using
       pcre_exec(), which uses a backtracking algorithm. With the exception of
       (*FAIL), which behaves like a failing negative assertion, they cause an
       error if encountered by pcre_dfa_exec().

							       38

PCREPATTERN(3)					   PCREPATTERN(3)

       If any of these verbs are used in an assertion or subroutine subpattern
       (including recursive subpatterns), their effect	is  confined  to  that
       subpattern;  it	does  not extend to the surrounding pattern. Note that
       such subpatterns are processed as anchored at the point where they  are
       tested.

       The  new verbs make use of what was previously invalid syntax: an open-
       ing parenthesis followed by an asterisk. In Perl, they are generally of
       the form (*VERB:ARG) but PCRE does not support the use of arguments, so
       its general form is just (*VERB). Any number of these verbs  may	 occur
       in a pattern. There are two kinds:

   Verbs that act immediately

       The following verbs act as soon as they are encountered:

	  (*ACCEPT)

       This  verb causes the match to end successfully, skipping the remainder
       of the pattern. When inside a recursion, only the innermost pattern  is
       ended  immediately.  If	(*ACCEPT) is inside capturing parentheses, the
       data so far is captured. (This feature was added	 to  PCRE  at  release
       8.00.) For example:

	 A((?:A|B(*ACCEPT)|C)D)

       This  matches  "AB", "AAD", or "ACD"; when it matches "AB", "B" is cap-
       tured by the outer parentheses.

	 (*FAIL) or (*F)

       This verb causes the match to fail, forcing backtracking to  occur.  It
       is  equivalent to (?!) but easier to read. The Perl documentation notes
       that it is probably useful only when combined  with  (?{})  or  (??{}).
       Those  are,  of course, Perl features that are not present in PCRE. The
       nearest equivalent is the callout feature, as for example in this  pat-
       tern:

	 a+(?C)(*FAIL)

       A  match	 with the string "aaaa" always fails, but the callout is taken
       before each backtrack happens (in this example, 10 times).

   Verbs that act after backtracking

       The following verbs do nothing when they are encountered. Matching con-
       tinues  with what follows, but if there is no subsequent match, a fail-
       ure is forced.  The verbs  differ  in  exactly  what  kind  of  failure
       occurs.

	 (*COMMIT)

       This  verb  causes  the whole match to fail outright if the rest of the
       pattern does not match. Even if the pattern is unanchored,  no  further

							       39

PCREPATTERN(3)					   PCREPATTERN(3)

       attempts	 to  find  a match by advancing the starting point take place.
       Once (*COMMIT) has been passed, pcre_exec() is committed to  finding  a
       match at the current starting point, or not at all. For example:

	 a+(*COMMIT)b

       This  matches  "xxaab" but not "aacaab". It can be thought of as a kind
       of dynamic anchor, or "I've started, so I must finish."

	 (*PRUNE)

       This verb causes the match to fail at the current position if the  rest
       of the pattern does not match. If the pattern is unanchored, the normal
       "bumpalong" advance to the next starting character then happens.	 Back-
       tracking	 can  occur as usual to the left of (*PRUNE), or when matching
       to the right of (*PRUNE), but if there is no match to the right,	 back-
       tracking	 cannot	 cross (*PRUNE).  In simple cases, the use of (*PRUNE)
       is just an alternative to an atomic group or possessive quantifier, but
       there  are  some uses of (*PRUNE) that cannot be expressed in any other
       way.

	 (*SKIP)

       This verb is like (*PRUNE), except that if the pattern  is  unanchored,
       the  "bumpalong" advance is not to the next character, but to the posi-
       tion in the subject where (*SKIP) was  encountered.  (*SKIP)  signifies
       that  whatever  text  was  matched leading up to it cannot be part of a
       successful match. Consider:

	 a+(*SKIP)b

       If the subject is "aaaac...",  after  the  first	 match	attempt	 fails
       (starting  at  the  first  character in the string), the starting point
       skips on to start the next attempt at "c". Note that a possessive quan-
       tifer  does not have the same effect as this example; although it would
       suppress backtracking  during  the  first  match	 attempt,  the	second
       attempt	would  start at the second character instead of skipping on to
       "c".

	 (*THEN)

       This verb causes a skip to the next alternation if the rest of the pat-
       tern does not match. That is, it cancels pending backtracking, but only
       within the current alternation. Its name	 comes	from  the  observation
       that it can be used for a pattern-based if-then-else block:

	 ( COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ ) ...

       If  the COND1 pattern matches, FOO is tried (and possibly further items
       after the end of the group if FOO succeeds);  on	 failure  the  matcher
       skips  to  the second alternative and tries COND2, without backtracking
       into COND1. If (*THEN) is used outside  of  any	alternation,  it  acts
       exactly like (*PRUNE).

							       40

PCREPATTERN(3)					   PCREPATTERN(3)

SEE ALSO

       pcreapi(3), pcrecallout(3), pcrematching(3), pcresyntax(3), pcre(3).

AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.

REVISION

       Last updated: 06 March 2010
       Copyright (c) 1997-2010 University of Cambridge.

							       41

[top]

List of man pages available for OpenBSD

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net