pcrepattern man page on Kali

Man page or keyword search:  
man Server   9211 pages
apropos Keyword Search (all sections)
Output format
Kali logo
[printable version]

PCREPATTERN(3)							PCREPATTERN(3)

NAME
       PCRE - Perl-compatible regular expressions

PCRE REGULAR EXPRESSION DETAILS

       The  syntax and semantics of the regular expressions that are supported
       by PCRE are described in detail below. There is a quick-reference  syn‐
       tax summary in the pcresyntax page. PCRE tries to match Perl syntax and
       semantics as closely as it can. PCRE  also  supports  some  alternative
       regular	expression  syntax (which does not conflict with the Perl syn‐
       tax) in order to provide some compatibility with regular expressions in
       Python, .NET, and Oniguruma.

       Perl's  regular expressions are described in its own documentation, and
       regular expressions in general are covered in a number of  books,  some
       of  which  have	copious	 examples. Jeffrey Friedl's "Mastering Regular
       Expressions", published by  O'Reilly,  covers  regular  expressions  in
       great  detail.  This  description  of  PCRE's  regular  expressions  is
       intended as reference material.

       This document discusses the patterns that are supported	by  PCRE  when
       one    its    main   matching   functions,   pcre_exec()	  (8-bit)   or
       pcre[16|32]_exec() (16- or 32-bit), is used. PCRE also has  alternative
       matching	 functions,  pcre_dfa_exec()  and pcre[16|32_dfa_exec(), which
       match using a different algorithm that is not Perl-compatible. Some  of
       the  features  discussed	 below	are not available when DFA matching is
       used. The advantages and disadvantages of  the  alternative  functions,
       and  how	 they  differ  from the normal functions, are discussed in the
       pcrematching page.

SPECIAL START-OF-PATTERN ITEMS

       A number of options that can be passed to pcre_compile()	 can  also  be
       set by special items at the start of a pattern. These are not Perl-com‐
       patible, but are provided to make these options accessible  to  pattern
       writers	who are not able to change the program that processes the pat‐
       tern. Any number of these items	may  appear,  but  they	 must  all  be
       together right at the start of the pattern string, and the letters must
       be in upper case.

   UTF support

       The original operation of PCRE was on strings of	 one-byte  characters.
       However,	 there	is  now also support for UTF-8 strings in the original
       library, an extra library that supports	16-bit	and  UTF-16  character
       strings,	 and a third library that supports 32-bit and UTF-32 character
       strings. To use these features, PCRE must be built to include appropri‐
       ate  support. When using UTF strings you must either call the compiling
       function with the PCRE_UTF8, PCRE_UTF16, or PCRE_UTF32 option,  or  the
       pattern must start with one of these special sequences:

	 (*UTF8)
	 (*UTF16)
	 (*UTF32)
	 (*UTF)

       (*UTF)  is  a  generic  sequence	 that  can  be	used  with  any of the
       libraries.  Starting a pattern with such a sequence  is	equivalent  to
       setting	the  relevant  option.	How setting a UTF mode affects pattern
       matching is mentioned in several places below. There is also a  summary
       of features in the pcreunicode page.

       Some applications that allow their users to supply patterns may wish to
       restrict	 them  to  non-UTF  data  for	security   reasons.   If   the
       PCRE_NEVER_UTF  option  is  set	at  compile  time, (*UTF) etc. are not
       allowed, and their appearance causes an error.

   Unicode property support

       Another special sequence that may appear at the start of a  pattern  is
       (*UCP).	 This  has  the same effect as setting the PCRE_UCP option: it
       causes sequences such as \d and \w to use Unicode properties to	deter‐
       mine character types, instead of recognizing only characters with codes
       less than 128 via a lookup table.

   Disabling auto-possessification

       If a pattern starts with (*NO_AUTO_POSSESS), it has the same effect  as
       setting	the  PCRE_NO_AUTO_POSSESS  option  at compile time. This stops
       PCRE from making quantifiers possessive when what follows cannot	 match
       the  repeated item. For example, by default a+b is treated as a++b. For
       more details, see the pcreapi documentation.

   Disabling start-up optimizations

       If a pattern starts with (*NO_START_OPT), it has	 the  same  effect  as
       setting the PCRE_NO_START_OPTIMIZE option either at compile or matching
       time. This disables several  optimizations  for	quickly	 reaching  "no
       match" results. For more details, see the pcreapi documentation.

   Newline conventions

       PCRE  supports five different conventions for indicating line breaks in
       strings: a single CR (carriage return) character, a  single  LF	(line‐
       feed) character, the two-character sequence CRLF, any of the three pre‐
       ceding, or any Unicode newline sequence. The pcreapi page  has  further
       discussion  about newlines, and shows how to set the newline convention
       in the options arguments for the compiling and matching functions.

       It is also possible to specify a newline convention by starting a  pat‐
       tern string with one of the following five sequences:

	 (*CR)	      carriage return
	 (*LF)	      linefeed
	 (*CRLF)      carriage return, followed by linefeed
	 (*ANYCRLF)   any of the three above
	 (*ANY)	      all Unicode newline sequences

       These override the default and the options given to the compiling func‐
       tion. For example, on a Unix system where LF  is	 the  default  newline
       sequence, the pattern

	 (*CR)a.b

       changes the convention to CR. That pattern matches "a\nb" because LF is
       no longer a newline. If more than one of these settings is present, the
       last one is used.

       The  newline  convention affects where the circumflex and dollar asser‐
       tions are true. It also affects the interpretation of the dot metachar‐
       acter when PCRE_DOTALL is not set, and the behaviour of \N. However, it
       does not affect what the \R escape sequence matches. By	default,  this
       is  any Unicode newline sequence, for Perl compatibility. However, this
       can be changed; see the description of \R in the section entitled "New‐
       line  sequences"	 below.	 A change of \R setting can be combined with a
       change of newline convention.

   Setting match and recursion limits

       The caller of pcre_exec() can set a limit on the number	of  times  the
       internal	 match() function is called and on the maximum depth of recur‐
       sive calls. These facilities are provided to catch runaway matches that
       are provoked by patterns with huge matching trees (a typical example is
       a pattern with nested unlimited repeats) and to avoid  running  out  of
       system  stack  by  too  much  recursion.	 When  one  of these limits is
       reached, pcre_exec() gives an error return. The limits can also be  set
       by items at the start of the pattern of the form

	 (*LIMIT_MATCH=d)
	 (*LIMIT_RECURSION=d)

       where d is any number of decimal digits. However, the value of the set‐
       ting must be less than the value set (or defaulted) by  the  caller  of
       pcre_exec()  for	 it  to	 have  any effect. In other words, the pattern
       writer can lower the limits set by the programmer, but not raise	 them.
       If  there  is  more  than one setting of one of these limits, the lower
       value is used.

EBCDIC CHARACTER CODES

       PCRE can be compiled to run in an environment that uses EBCDIC  as  its
       character code rather than ASCII or Unicode (typically a mainframe sys‐
       tem). In the sections below, character code values are  ASCII  or  Uni‐
       code; in an EBCDIC environment these characters may have different code
       values, and there are no code points greater than 255.

CHARACTERS AND METACHARACTERS

       A regular expression is a pattern that is  matched  against  a  subject
       string  from  left  to right. Most characters stand for themselves in a
       pattern, and match the corresponding characters in the  subject.	 As  a
       trivial example, the pattern

	 The quick brown fox

       matches a portion of a subject string that is identical to itself. When
       caseless matching is specified (the PCRE_CASELESS option), letters  are
       matched	independently  of case. In a UTF mode, PCRE always understands
       the concept of case for characters whose values are less than  128,  so
       caseless	 matching  is always possible. For characters with higher val‐
       ues, the concept of case is supported if PCRE is compiled with  Unicode
       property	 support,  but	not  otherwise.	  If  you want to use caseless
       matching for characters 128 and above, you must	ensure	that  PCRE  is
       compiled with Unicode property support as well as with UTF support.

       The  power  of  regular	expressions  comes from the ability to include
       alternatives and repetitions in the pattern. These are encoded  in  the
       pattern by the use of metacharacters, which do not stand for themselves
       but instead are interpreted in some special way.

       There are two different sets of metacharacters: those that  are	recog‐
       nized  anywhere in the pattern except within square brackets, and those
       that are recognized within square brackets.  Outside  square  brackets,
       the metacharacters are as follows:

	 \	general escape character with several uses
	 ^	assert start of string (or line, in multiline mode)
	 $	assert end of string (or line, in multiline mode)
	 .	match any character except newline (by default)
	 [	start character class definition
	 |	start of alternative branch
	 (	start subpattern
	 )	end subpattern
	 ?	extends the meaning of (
		also 0 or 1 quantifier
		also quantifier minimizer
	 *	0 or more quantifier
	 +	1 or more quantifier
		also "possessive quantifier"
	 {	start min/max quantifier

       Part  of	 a  pattern  that is in square brackets is called a "character
       class". In a character class the only metacharacters are:

	 \	general escape character
	 ^	negate the class, but only if the first character
	 -	indicates character range
	 [	POSIX character class (only if followed by POSIX
		  syntax)
	 ]	terminates the character class

       The following sections describe the use of each of the metacharacters.

BACKSLASH

       The backslash character has several uses. Firstly, if it is followed by
       a character that is not a number or a letter, it takes away any special
       meaning that character may have. This use of  backslash	as  an	escape
       character applies both inside and outside character classes.

       For  example,  if  you want to match a * character, you write \* in the
       pattern.	 This escaping action applies whether  or  not	the  following
       character  would	 otherwise be interpreted as a metacharacter, so it is
       always safe to precede a non-alphanumeric  with	backslash  to  specify
       that  it stands for itself. In particular, if you want to match a back‐
       slash, you write \\.

       In a UTF mode, only ASCII numbers and letters have any special  meaning
       after  a	 backslash.  All  other characters (in particular, those whose
       codepoints are greater than 127) are treated as literals.

       If a pattern is compiled with  the  PCRE_EXTENDED  option,  most	 white
       space  in the pattern (other than in a character class), and characters
       between a # outside a character class and the next newline,  inclusive,
       are ignored. An escaping backslash can be used to include a white space
       or # character as part of the pattern.

       If you want to remove the special meaning from a	 sequence  of  charac‐
       ters,  you can do so by putting them between \Q and \E. This is differ‐
       ent from Perl in that $ and  @  are  handled  as	 literals  in  \Q...\E
       sequences  in  PCRE, whereas in Perl, $ and @ cause variable interpola‐
       tion. Note the following examples:

	 Pattern	    PCRE matches   Perl matches

	 \Qabc$xyz\E	    abc$xyz	   abc followed by the
					     contents of $xyz
	 \Qabc\$xyz\E	    abc\$xyz	   abc\$xyz
	 \Qabc\E\$\Qxyz\E   abc$xyz	   abc$xyz

       The \Q...\E sequence is recognized both inside  and  outside  character
       classes.	  An  isolated \E that is not preceded by \Q is ignored. If \Q
       is not followed by \E later in the pattern, the literal	interpretation
       continues  to  the  end	of  the pattern (that is, \E is assumed at the
       end). If the isolated \Q is inside a character class,  this  causes  an
       error, because the character class is not terminated.

   Non-printing characters

       A second use of backslash provides a way of encoding non-printing char‐
       acters in patterns in a visible manner. There is no restriction on  the
       appearance  of non-printing characters, apart from the binary zero that
       terminates a pattern, but when a pattern	 is  being  prepared  by  text
       editing,	 it  is	 often	easier	to  use	 one  of  the following escape
       sequences than the binary character it represents.  In an ASCII or Uni‐
       code environment, these escapes are as follows:

	 \a	   alarm, that is, the BEL character (hex 07)
	 \cx	   "control-x", where x is any ASCII character
	 \e	   escape (hex 1B)
	 \f	   form feed (hex 0C)
	 \n	   linefeed (hex 0A)
	 \r	   carriage return (hex 0D)
	 \t	   tab (hex 09)
	 \0dd	   character with octal code 0dd
	 \ddd	   character with octal code ddd, or back reference
	 \o{ddd..} character with octal code ddd..
	 \xhh	   character with hex code hh
	 \x{hhh..} character with hex code hhh.. (non-JavaScript mode)
	 \uhhhh	   character with hex code hhhh (JavaScript mode only)

       The  precise effect of \cx on ASCII characters is as follows: if x is a
       lower case letter, it is converted to upper case. Then  bit  6  of  the
       character (hex 40) is inverted. Thus \cA to \cZ become hex 01 to hex 1A
       (A is 41, Z is 5A), but \c{ becomes hex 3B ({ is 7B), and  \c;  becomes
       hex  7B (; is 3B). If the data item (byte or 16-bit value) following \c
       has a value greater than 127, a compile-time error occurs.  This	 locks
       out non-ASCII characters in all modes.

       When PCRE is compiled in EBCDIC mode, \a, \e, \f, \n, \r, and \t gener‐
       ate the appropriate EBCDIC code values. The \c escape is	 processed  as
       specified for Perl in the perlebcdic document. The only characters that
       are allowed after \c are A-Z, a-z, or one of @, [, \, ], ^,  _,	or  ?.
       Any  other  character  provokes	a  compile-time error. The sequence \@
       encodes character code 0; the letters (in either case)  encode  charac‐
       ters 1-26 (hex 01 to hex 1A); [, \, ], ^, and _ encode characters 27-31
       (hex 1B to hex 1F), and \? becomes either 255 (hex FF) or 95 (hex 5F).

       Thus, apart from \?, these escapes generate  the	 same  character  code
       values  as  they do in an ASCII environment, though the meanings of the
       values mostly differ. For example, \G always generates  code  value  7,
       which is BEL in ASCII but DEL in EBCDIC.

       The  sequence  \?  generates DEL (127, hex 7F) in an ASCII environment,
       but because 127 is not a control character in  EBCDIC,  Perl  makes  it
       generate	 the  APC character. Unfortunately, there are several variants
       of EBCDIC. In most of them the APC character has	 the  value  255  (hex
       FF),  but  in  the one Perl calls POSIX-BC its value is 95 (hex 5F). If
       certain other characters have POSIX-BC values, PCRE makes  \?  generate
       95; otherwise it generates 255.

       After  \0  up  to two further octal digits are read. If there are fewer
       than two digits, just  those  that  are	present	 are  used.  Thus  the
       sequence \0\x\015 specifies two binary zeros followed by a CR character
       (code value 13). Make sure you supply two digits after the initial zero
       if the pattern character that follows is itself an octal digit.

       The  escape \o must be followed by a sequence of octal digits, enclosed
       in braces. An error occurs if this is not the case. This	 escape	 is  a
       recent  addition	 to Perl; it provides way of specifying character code
       points as octal numbers greater than 0777, and  it  also	 allows	 octal
       numbers and back references to be unambiguously specified.

       For greater clarity and unambiguity, it is best to avoid following \ by
       a digit greater than zero. Instead, use \o{} or \x{} to specify charac‐
       ter  numbers,  and \g{} to specify back references. The following para‐
       graphs describe the old, ambiguous syntax.

       The handling of a backslash followed by a digit other than 0 is compli‐
       cated,  and  Perl  has changed in recent releases, causing PCRE also to
       change. Outside a character class, PCRE reads the digit and any follow‐
       ing  digits  as	a  decimal number. If the number is less than 8, or if
       there have been at least that many previous capturing left  parentheses
       in  the expression, the entire sequence is taken as a back reference. A
       description of how this works is given later, following the  discussion
       of parenthesized subpatterns.

       Inside  a  character  class,  or	 if  the decimal number following \ is
       greater than 7 and there have not been that many capturing subpatterns,
       PCRE  handles \8 and \9 as the literal characters "8" and "9", and oth‐
       erwise re-reads up to three octal digits following the backslash, using
       them  to	 generate  a  data character.  Any subsequent digits stand for
       themselves. For example:

	 \040	is another way of writing an ASCII space
	 \40	is the same, provided there are fewer than 40
		   previous capturing subpatterns
	 \7	is always a back reference
	 \11	might be a back reference, or another way of
		   writing a tab
	 \011	is always a tab
	 \0113	is a tab followed by the character "3"
	 \113	might be a back reference, otherwise the
		   character with octal code 113
	 \377	might be a back reference, otherwise
		   the value 255 (decimal)
	 \81	is either a back reference, or the two
		   characters "8" and "1"

       Note that octal values of 100 or greater that are specified using  this
       syntax  must  not be introduced by a leading zero, because no more than
       three octal digits are ever read.

       By default, after \x that is not followed by {, from zero to two	 hexa‐
       decimal	digits	are  read (letters can be in upper or lower case). Any
       number of hexadecimal digits may appear between \x{ and }. If a charac‐
       ter  other  than	 a  hexadecimal digit appears between \x{ and }, or if
       there is no terminating }, an error occurs.

       If the PCRE_JAVASCRIPT_COMPAT option is set, the interpretation	of  \x
       is  as  just described only when it is followed by two hexadecimal dig‐
       its.  Otherwise, it matches a  literal  "x"  character.	In  JavaScript
       mode, support for code points greater than 256 is provided by \u, which
       must be followed by four hexadecimal digits;  otherwise	it  matches  a
       literal "u" character.

       Characters whose value is less than 256 can be defined by either of the
       two syntaxes for \x (or by \u in JavaScript mode). There is no  differ‐
       ence in the way they are handled. For example, \xdc is exactly the same
       as \x{dc} (or \u00dc in JavaScript mode).

   Constraints on character values

       Characters that are specified using octal or  hexadecimal  numbers  are
       limited to certain values, as follows:

	 8-bit non-UTF mode    less than 0x100
	 8-bit UTF-8 mode      less than 0x10ffff and a valid codepoint
	 16-bit non-UTF mode   less than 0x10000
	 16-bit UTF-16 mode    less than 0x10ffff and a valid codepoint
	 32-bit non-UTF mode   less than 0x100000000
	 32-bit UTF-32 mode    less than 0x10ffff and a valid codepoint

       Invalid	Unicode	 codepoints  are  the  range 0xd800 to 0xdfff (the so-
       called "surrogate" codepoints), and 0xffef.

   Escape sequences in character classes

       All the sequences that define a single character value can be used both
       inside  and  outside character classes. In addition, inside a character
       class, \b is interpreted as the backspace character (hex 08).

       \N is not allowed in a character class. \B, \R, and \X are not  special
       inside  a  character  class.  Like other unrecognized escape sequences,
       they are treated as  the	 literal  characters  "B",  "R",  and  "X"  by
       default,	 but cause an error if the PCRE_EXTRA option is set. Outside a
       character class, these sequences have different meanings.

   Unsupported escape sequences

       In Perl, the sequences \l, \L, \u, and \U are recognized by its	string
       handler	and  used  to  modify  the  case  of  following characters. By
       default, PCRE does not support these escape sequences. However, if  the
       PCRE_JAVASCRIPT_COMPAT  option  is set, \U matches a "U" character, and
       \u can be used to define a character by code point, as described in the
       previous section.

   Absolute and relative back references

       The  sequence  \g followed by an unsigned or a negative number, option‐
       ally enclosed in braces, is an absolute or relative back	 reference.  A
       named back reference can be coded as \g{name}. Back references are dis‐
       cussed later, following the discussion of parenthesized subpatterns.

   Absolute and relative subroutine calls

       For compatibility with Oniguruma, the non-Perl syntax \g followed by  a
       name or a number enclosed either in angle brackets or single quotes, is
       an alternative syntax for referencing a subpattern as  a	 "subroutine".
       Details	are  discussed	later.	 Note  that  \g{...} (Perl syntax) and
       \g<...> (Oniguruma syntax) are not synonymous. The  former  is  a  back
       reference; the latter is a subroutine call.

   Generic character types

       Another use of backslash is for specifying generic character types:

	 \d	any decimal digit
	 \D	any character that is not a decimal digit
	 \h	any horizontal white space character
	 \H	any character that is not a horizontal white space character
	 \s	any white space character
	 \S	any character that is not a white space character
	 \v	any vertical white space character
	 \V	any character that is not a vertical white space character
	 \w	any "word" character
	 \W	any "non-word" character

       There is also the single sequence \N, which matches a non-newline char‐
       acter.  This is the same as the "." metacharacter when  PCRE_DOTALL  is
       not  set.  Perl also uses \N to match characters by name; PCRE does not
       support this.

       Each pair of lower and upper case escape sequences partitions the  com‐
       plete  set  of  characters  into two disjoint sets. Any given character
       matches one, and only one, of each pair. The sequences can appear  both
       inside  and outside character classes. They each match one character of
       the appropriate type. If the current matching point is at  the  end  of
       the  subject string, all of them fail, because there is no character to
       match.

       For compatibility with Perl, \s did not used to match the VT  character
       (code  11),  which  made it different from the the POSIX "space" class.
       However, Perl added VT at release  5.18,	 and  PCRE  followed  suit  at
       release	8.34.  The  default  \s characters are now HT (9), LF (10), VT
       (11), FF (12), CR (13), and space (32),	which  are  defined  as	 white
       space in the "C" locale. This list may vary if locale-specific matching
       is taking place. For example, in some locales the "non-breaking	space"
       character  (\xA0)  is  recognized  as white space, and in others the VT
       character is not.

       A "word" character is an underscore or any character that is  a	letter
       or  digit.   By	default,  the definition of letters and digits is con‐
       trolled by PCRE's low-valued character tables, and may vary if  locale-
       specific	 matching is taking place (see "Locale support" in the pcreapi
       page). For example, in a French locale such  as	"fr_FR"	 in  Unix-like
       systems,	 or "french" in Windows, some character codes greater than 127
       are used for accented letters, and these are then matched  by  \w.  The
       use of locales with Unicode is discouraged.

       By  default,  characters	 whose	code points are greater than 127 never
       match \d, \s, or \w, and always match \D, \S, and \W, although this may
       vary  for characters in the range 128-255 when locale-specific matching
       is happening.  These escape sequences retain  their  original  meanings
       from  before  Unicode support was available, mainly for efficiency rea‐
       sons. If PCRE is	 compiled  with	 Unicode  property  support,  and  the
       PCRE_UCP	 option is set, the behaviour is changed so that Unicode prop‐
       erties are used to determine character types, as follows:

	 \d  any character that matches \p{Nd} (decimal digit)
	 \s  any character that matches \p{Z} or \h or \v
	 \w  any character that matches \p{L} or \p{N}, plus underscore

       The upper case escapes match the inverse sets of characters. Note  that
       \d  matches  only decimal digits, whereas \w matches any Unicode digit,
       as well as any Unicode letter, and underscore. Note also that  PCRE_UCP
       affects	\b,  and  \B  because  they are defined in terms of \w and \W.
       Matching these sequences is noticeably slower when PCRE_UCP is set.

       The sequences \h, \H, \v, and \V are features that were added  to  Perl
       at  release  5.10. In contrast to the other sequences, which match only
       ASCII characters by default, these  always  match  certain  high-valued
       code points, whether or not PCRE_UCP is set. The horizontal space char‐
       acters are:

	 U+0009	    Horizontal tab (HT)
	 U+0020	    Space
	 U+00A0	    Non-break space
	 U+1680	    Ogham space mark
	 U+180E	    Mongolian vowel separator
	 U+2000	    En quad
	 U+2001	    Em quad
	 U+2002	    En space
	 U+2003	    Em space
	 U+2004	    Three-per-em space
	 U+2005	    Four-per-em space
	 U+2006	    Six-per-em space
	 U+2007	    Figure space
	 U+2008	    Punctuation space
	 U+2009	    Thin space
	 U+200A	    Hair space
	 U+202F	    Narrow no-break space
	 U+205F	    Medium mathematical space
	 U+3000	    Ideographic space

       The vertical space characters are:

	 U+000A	    Linefeed (LF)
	 U+000B	    Vertical tab (VT)
	 U+000C	    Form feed (FF)
	 U+000D	    Carriage return (CR)
	 U+0085	    Next line (NEL)
	 U+2028	    Line separator
	 U+2029	    Paragraph separator

       In 8-bit, non-UTF-8 mode, only the characters with codepoints less than
       256 are relevant.

   Newline sequences

       Outside	a  character class, by default, the escape sequence \R matches
       any Unicode newline sequence. In 8-bit non-UTF-8 mode \R is  equivalent
       to the following:

	 (?>\r\n|\n|\x0b|\f|\r|\x85)

       This  is	 an  example  of an "atomic group", details of which are given
       below.  This particular group matches either the two-character sequence
       CR  followed  by	 LF,  or  one  of  the single characters LF (linefeed,
       U+000A), VT (vertical tab, U+000B), FF (form feed,  U+000C),  CR	 (car‐
       riage  return,  U+000D),	 or NEL (next line, U+0085). The two-character
       sequence is treated as a single unit that cannot be split.

       In other modes, two additional characters whose codepoints are  greater
       than 255 are added: LS (line separator, U+2028) and PS (paragraph sepa‐
       rator, U+2029).	Unicode character property support is not  needed  for
       these characters to be recognized.

       It is possible to restrict \R to match only CR, LF, or CRLF (instead of
       the complete set	 of  Unicode  line  endings)  by  setting  the	option
       PCRE_BSR_ANYCRLF either at compile time or when the pattern is matched.
       (BSR is an abbrevation for "backslash R".) This can be made the default
       when  PCRE  is  built;  if this is the case, the other behaviour can be
       requested via the PCRE_BSR_UNICODE option.   It	is  also  possible  to
       specify	these  settings	 by  starting a pattern string with one of the
       following sequences:

	 (*BSR_ANYCRLF)	  CR, LF, or CRLF only
	 (*BSR_UNICODE)	  any Unicode newline sequence

       These override the default and the options given to the compiling func‐
       tion,  but  they	 can  themselves  be  overridden by options given to a
       matching function. Note that these  special  settings,  which  are  not
       Perl-compatible,	 are  recognized  only at the very start of a pattern,
       and that they must be in upper case.  If	 more  than  one  of  them  is
       present,	 the  last  one is used. They can be combined with a change of
       newline convention; for example, a pattern can start with:

	 (*ANY)(*BSR_ANYCRLF)

       They can also be combined with the (*UTF8), (*UTF16), (*UTF32),	(*UTF)
       or (*UCP) special sequences. Inside a character class, \R is treated as
       an unrecognized escape sequence, and  so	 matches  the  letter  "R"  by
       default, but causes an error if PCRE_EXTRA is set.

   Unicode character properties

       When PCRE is built with Unicode character property support, three addi‐
       tional escape sequences that match characters with specific  properties
       are  available.	 When  in 8-bit non-UTF-8 mode, these sequences are of
       course limited to testing characters whose  codepoints  are  less  than
       256, but they do work in this mode.  The extra escape sequences are:

	 \p{xx}	  a character with the xx property
	 \P{xx}	  a character without the xx property
	 \X	  a Unicode extended grapheme cluster

       The  property  names represented by xx above are limited to the Unicode
       script names, the general category properties, "Any", which matches any
       character   (including  newline),  and  some  special  PCRE  properties
       (described in the next section).	 Other Perl properties such as	"InMu‐
       sicalSymbols"  are  not	currently supported by PCRE. Note that \P{Any}
       does not match any characters, so always causes a match failure.

       Sets of Unicode characters are defined as belonging to certain scripts.
       A  character from one of these sets can be matched using a script name.
       For example:

	 \p{Greek}
	 \P{Han}

       Those that are not part of an identified script are lumped together  as
       "Common". The current list of scripts is:

       Arabic,	Armenian, Avestan, Balinese, Bamum, Bassa_Vah, Batak, Bengali,
       Bopomofo, Brahmi, Braille, Buginese, Buhid,  Canadian_Aboriginal,  Car‐
       ian, Caucasian_Albanian, Chakma, Cham, Cherokee, Common, Coptic, Cunei‐
       form, Cypriot, Cyrillic, Deseret, Devanagari, Duployan, Egyptian_Hiero‐
       glyphs,	Elbasan,  Ethiopic,  Georgian,	Glagolitic,  Gothic,  Grantha,
       Greek, Gujarati, Gurmukhi,  Han,	 Hangul,  Hanunoo,  Hebrew,  Hiragana,
       Imperial_Aramaic,     Inherited,	    Inscriptional_Pahlavi,    Inscrip‐
       tional_Parthian,	 Javanese,  Kaithi,   Kannada,	 Katakana,   Kayah_Li,
       Kharoshthi,  Khmer,  Khojki, Khudawadi, Lao, Latin, Lepcha, Limbu, Lin‐
       ear_A, Linear_B, Lisu, Lycian, Lydian,  Mahajani,  Malayalam,  Mandaic,
       Manichaean,	Meetei_Mayek,	  Mende_Kikakui,     Meroitic_Cursive,
       Meroitic_Hieroglyphs, Miao, Modi, Mongolian, Mro,  Myanmar,  Nabataean,
       New_Tai_Lue,   Nko,  Ogham,  Ol_Chiki,  Old_Italic,  Old_North_Arabian,
       Old_Permic, Old_Persian, Old_South_Arabian, Old_Turkic, Oriya, Osmanya,
       Pahawh_Hmong,	Palmyrene,    Pau_Cin_Hau,    Phags_Pa,	   Phoenician,
       Psalter_Pahlavi, Rejang, Runic, Samaritan,  Saurashtra,	Sharada,  Sha‐
       vian,  Siddham, Sinhala, Sora_Sompeng, Sundanese, Syloti_Nagri, Syriac,
       Tagalog, Tagbanwa, Tai_Le, Tai_Tham, Tai_Viet,  Takri,  Tamil,  Telugu,
       Thaana,	Thai,  Tibetan, Tifinagh, Tirhuta, Ugaritic, Vai, Warang_Citi,
       Yi.

       Each character has exactly one Unicode general category property, spec‐
       ified  by a two-letter abbreviation. For compatibility with Perl, nega‐
       tion can be specified by including a  circumflex	 between  the  opening
       brace  and  the	property  name.	 For  example,	\p{^Lu} is the same as
       \P{Lu}.

       If only one letter is specified with \p or \P, it includes all the gen‐
       eral  category properties that start with that letter. In this case, in
       the absence of negation, the curly brackets in the escape sequence  are
       optional; these two examples have the same effect:

	 \p{L}
	 \pL

       The following general category property codes are supported:

	 C     Other
	 Cc    Control
	 Cf    Format
	 Cn    Unassigned
	 Co    Private use
	 Cs    Surrogate

	 L     Letter
	 Ll    Lower case letter
	 Lm    Modifier letter
	 Lo    Other letter
	 Lt    Title case letter
	 Lu    Upper case letter

	 M     Mark
	 Mc    Spacing mark
	 Me    Enclosing mark
	 Mn    Non-spacing mark

	 N     Number
	 Nd    Decimal number
	 Nl    Letter number
	 No    Other number

	 P     Punctuation
	 Pc    Connector punctuation
	 Pd    Dash punctuation
	 Pe    Close punctuation
	 Pf    Final punctuation
	 Pi    Initial punctuation
	 Po    Other punctuation
	 Ps    Open punctuation

	 S     Symbol
	 Sc    Currency symbol
	 Sk    Modifier symbol
	 Sm    Mathematical symbol
	 So    Other symbol

	 Z     Separator
	 Zl    Line separator
	 Zp    Paragraph separator
	 Zs    Space separator

       The  special property L& is also supported: it matches a character that
       has the Lu, Ll, or Lt property, in other words, a letter	 that  is  not
       classified as a modifier or "other".

       The  Cs	(Surrogate)  property  applies only to characters in the range
       U+D800 to U+DFFF. Such characters are not valid in Unicode strings  and
       so  cannot  be  tested  by  PCRE, unless UTF validity checking has been
       turned	 off	(see	the    discussion    of	   PCRE_NO_UTF8_CHECK,
       PCRE_NO_UTF16_CHECK  and PCRE_NO_UTF32_CHECK in the pcreapi page). Perl
       does not support the Cs property.

       The long synonyms for  property	names  that  Perl  supports  (such  as
       \p{Letter})  are	 not  supported by PCRE, nor is it permitted to prefix
       any of these properties with "Is".

       No character that is in the Unicode table has the Cn (unassigned) prop‐
       erty.  Instead, this property is assumed for any code point that is not
       in the Unicode table.

       Specifying caseless matching does not affect  these  escape  sequences.
       For  example,  \p{Lu}  always  matches only upper case letters. This is
       different from the behaviour of current versions of Perl.

       Matching characters by Unicode property is not fast, because  PCRE  has
       to  do  a  multistage table lookup in order to find a character's prop‐
       erty. That is why the traditional escape sequences such as \d and \w do
       not use Unicode properties in PCRE by default, though you can make them
       do so by setting the PCRE_UCP option or by starting  the	 pattern  with
       (*UCP).

   Extended grapheme clusters

       The  \X	escape	matches	 any number of Unicode characters that form an
       "extended grapheme cluster", and treats the sequence as an atomic group
       (see  below).   Up  to and including release 8.31, PCRE matched an ear‐
       lier, simpler definition that was equivalent to

	 (?>\PM\pM*)

       That is, it matched a character without the "mark"  property,  followed
       by  zero	 or  more characters with the "mark" property. Characters with
       the "mark" property are typically non-spacing accents that  affect  the
       preceding character.

       This  simple definition was extended in Unicode to include more compli‐
       cated kinds of composite character by giving each character a  grapheme
       breaking	 property,  and	 creating  rules  that use these properties to
       define the boundaries of extended grapheme  clusters.  In  releases  of
       PCRE later than 8.31, \X matches one of these clusters.

       \X  always  matches  at least one character. Then it decides whether to
       add additional characters according to the following rules for ending a
       cluster:

       1. End at the end of the subject string.

       2.  Do not end between CR and LF; otherwise end after any control char‐
       acter.

       3. Do not break Hangul (a Korean	 script)  syllable  sequences.	Hangul
       characters  are of five types: L, V, T, LV, and LVT. An L character may
       be followed by an L, V, LV, or LVT character; an LV or V character  may
       be followed by a V or T character; an LVT or T character may be follwed
       only by a T character.

       4. Do not end before extending characters or spacing marks.  Characters
       with  the  "mark"  property  always have the "extend" grapheme breaking
       property.

       5. Do not end after prepend characters.

       6. Otherwise, end the cluster.

   PCRE's additional properties

       As well as the standard Unicode properties described above,  PCRE  sup‐
       ports  four  more  that	make it possible to convert traditional escape
       sequences such as \w and \s to use Unicode properties. PCRE uses	 these
       non-standard, non-Perl properties internally when PCRE_UCP is set. How‐
       ever, they may also be used explicitly. These properties are:

	 Xan   Any alphanumeric character
	 Xps   Any POSIX space character
	 Xsp   Any Perl space character
	 Xwd   Any Perl "word" character

       Xan matches characters that have either the L (letter) or the  N	 (num‐
       ber)  property. Xps matches the characters tab, linefeed, vertical tab,
       form feed, or carriage return, and any other character that has	the  Z
       (separator)  property.  Xsp is the same as Xps; it used to exclude ver‐
       tical tab, for Perl compatibility, but Perl changed, and so  PCRE  fol‐
       lowed  at  release  8.34.  Xwd matches the same characters as Xan, plus
       underscore.

       There is another non-standard property, Xuc, which matches any  charac‐
       ter  that  can  be represented by a Universal Character Name in C++ and
       other programming languages. These are the characters $,	 @,  `	(grave
       accent),	 and  all  characters with Unicode code points greater than or
       equal to U+00A0, except for the surrogates U+D800 to U+DFFF. Note  that
       most  base  (ASCII) characters are excluded. (Universal Character Names
       are of the form \uHHHH or \UHHHHHHHH where H is	a  hexadecimal	digit.
       Note that the Xuc property does not match these sequences but the char‐
       acters that they represent.)

   Resetting the match start

       The escape sequence \K causes any previously matched characters not  to
       be included in the final matched sequence. For example, the pattern:

	 foo\Kbar

       matches	"foobar",  but reports that it has matched "bar". This feature
       is similar to a lookbehind assertion (described	below).	  However,  in
       this  case, the part of the subject before the real match does not have
       to be of fixed length, as lookbehind assertions do. The use of \K  does
       not  interfere  with  the setting of captured substrings.  For example,
       when the pattern

	 (foo)\Kbar

       matches "foobar", the first substring is still set to "foo".

       Perl documents that the use  of	\K  within  assertions	is  "not  well
       defined".  In  PCRE,  \K	 is  acted upon when it occurs inside positive
       assertions, but is ignored in negative assertions.  Note	 that  when  a
       pattern	such  as (?=ab\K) matches, the reported start of the match can
       be greater than the end of the match.

   Simple assertions

       The final use of backslash is for certain simple assertions. An	asser‐
       tion  specifies a condition that has to be met at a particular point in
       a match, without consuming any characters from the subject string.  The
       use  of subpatterns for more complicated assertions is described below.
       The backslashed assertions are:

	 \b	matches at a word boundary
	 \B	matches when not at a word boundary
	 \A	matches at the start of the subject
	 \Z	matches at the end of the subject
		 also matches before a newline at the end of the subject
	 \z	matches only at the end of the subject
	 \G	matches at the first matching position in the subject

       Inside a character class, \b has a different meaning;  it  matches  the
       backspace  character.  If  any  other  of these assertions appears in a
       character class, by default it matches the corresponding literal	 char‐
       acter  (for  example,  \B  matches  the	letter	B).  However,  if  the
       PCRE_EXTRA option is set, an "invalid escape sequence" error is	gener‐
       ated instead.

       A  word	boundary is a position in the subject string where the current
       character and the previous character do not both match \w or  \W	 (i.e.
       one  matches  \w	 and the other matches \W), or the start or end of the
       string if the first or last character matches \w,  respectively.	 In  a
       UTF  mode,  the	meanings  of  \w  and \W can be changed by setting the
       PCRE_UCP option. When this is done, it also affects \b and \B.  Neither
       PCRE  nor  Perl has a separate "start of word" or "end of word" metase‐
       quence. However, whatever follows \b normally determines which  it  is.
       For example, the fragment \ba matches "a" at the start of a word.

       The  \A,	 \Z,  and \z assertions differ from the traditional circumflex
       and dollar (described in the next section) in that they only ever match
       at  the	very start and end of the subject string, whatever options are
       set. Thus, they are independent of multiline mode. These	 three	asser‐
       tions are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options, which
       affect only the behaviour of the circumflex and dollar  metacharacters.
       However,	 if the startoffset argument of pcre_exec() is non-zero, indi‐
       cating that matching is to start at a point other than the beginning of
       the  subject,  \A  can never match. The difference between \Z and \z is
       that \Z matches before a newline at the end of the string as well as at
       the very end, whereas \z matches only at the end.

       The  \G assertion is true only when the current matching position is at
       the start point of the match, as specified by the startoffset  argument
       of  pcre_exec().	 It  differs  from \A when the value of startoffset is
       non-zero. By calling pcre_exec() multiple times with appropriate	 argu‐
       ments, you can mimic Perl's /g option, and it is in this kind of imple‐
       mentation where \G can be useful.

       Note, however, that PCRE's interpretation of \G, as the	start  of  the
       current match, is subtly different from Perl's, which defines it as the
       end of the previous match. In Perl, these can  be  different  when  the
       previously  matched  string was empty. Because PCRE does just one match
       at a time, it cannot reproduce this behaviour.

       If all the alternatives of a pattern begin with \G, the	expression  is
       anchored to the starting match position, and the "anchored" flag is set
       in the compiled regular expression.

CIRCUMFLEX AND DOLLAR

       The circumflex and dollar  metacharacters  are  zero-width  assertions.
       That  is,  they test for a particular condition being true without con‐
       suming any characters from the subject string.

       Outside a character class, in the default matching mode, the circumflex
       character  is  an  assertion  that is true only if the current matching
       point is at the start of the subject string. If the  startoffset	 argu‐
       ment  of	 pcre_exec()  is  non-zero,  circumflex can never match if the
       PCRE_MULTILINE option is unset. Inside a	 character  class,  circumflex
       has an entirely different meaning (see below).

       Circumflex  need	 not be the first character of the pattern if a number
       of alternatives are involved, but it should be the first thing in  each
       alternative  in	which  it appears if the pattern is ever to match that
       branch. If all possible alternatives start with a circumflex, that  is,
       if  the	pattern	 is constrained to match only at the start of the sub‐
       ject, it is said to be an "anchored" pattern.  (There  are  also	 other
       constructs that can cause a pattern to be anchored.)

       The  dollar  character is an assertion that is true only if the current
       matching point is at the end of	the  subject  string,  or  immediately
       before  a newline at the end of the string (by default). Note, however,
       that it does not actually match the newline. Dollar  need  not  be  the
       last character of the pattern if a number of alternatives are involved,
       but it should be the last item in any branch in which it appears.  Dol‐
       lar has no special meaning in a character class.

       The  meaning  of	 dollar	 can be changed so that it matches only at the
       very end of the string, by setting the  PCRE_DOLLAR_ENDONLY  option  at
       compile time. This does not affect the \Z assertion.

       The meanings of the circumflex and dollar characters are changed if the
       PCRE_MULTILINE option is set. When  this	 is  the  case,	 a  circumflex
       matches	immediately after internal newlines as well as at the start of
       the subject string. It does not match after a  newline  that  ends  the
       string.	A dollar matches before any newlines in the string, as well as
       at the very end, when PCRE_MULTILINE is set. When newline is  specified
       as  the	two-character  sequence CRLF, isolated CR and LF characters do
       not indicate newlines.

       For example, the pattern /^abc$/ matches the subject string  "def\nabc"
       (where  \n  represents a newline) in multiline mode, but not otherwise.
       Consequently, patterns that are anchored in single  line	 mode  because
       all  branches  start  with  ^ are not anchored in multiline mode, and a
       match for circumflex is	possible  when	the  startoffset  argument  of
       pcre_exec()  is	non-zero. The PCRE_DOLLAR_ENDONLY option is ignored if
       PCRE_MULTILINE is set.

       Note that the sequences \A, \Z, and \z can be used to match  the	 start
       and  end of the subject in both modes, and if all branches of a pattern
       start with \A it is always anchored, whether or not  PCRE_MULTILINE  is
       set.

FULL STOP (PERIOD, DOT) AND \N

       Outside a character class, a dot in the pattern matches any one charac‐
       ter in the subject string except (by default) a character  that	signi‐
       fies the end of a line.

       When  a line ending is defined as a single character, dot never matches
       that character; when the two-character sequence CRLF is used, dot  does
       not  match  CR  if  it  is immediately followed by LF, but otherwise it
       matches all characters (including isolated CRs and LFs). When any  Uni‐
       code  line endings are being recognized, dot does not match CR or LF or
       any of the other line ending characters.

       The behaviour of dot with regard to newlines can	 be  changed.  If  the
       PCRE_DOTALL  option  is	set,  a dot matches any one character, without
       exception. If the two-character sequence CRLF is present in the subject
       string, it takes two dots to match it.

       The  handling of dot is entirely independent of the handling of circum‐
       flex and dollar, the only relationship being  that  they	 both  involve
       newlines. Dot has no special meaning in a character class.

       The  escape  sequence  \N  behaves  like	 a  dot, except that it is not
       affected by the PCRE_DOTALL option. In  other  words,  it  matches  any
       character  except  one that signifies the end of a line. Perl also uses
       \N to match characters by name; PCRE does not support this.

MATCHING A SINGLE DATA UNIT

       Outside a character class, the escape sequence \C matches any one  data
       unit,  whether or not a UTF mode is set. In the 8-bit library, one data
       unit is one byte; in the 16-bit library it is a	16-bit	unit;  in  the
       32-bit  library	it  is	a 32-bit unit. Unlike a dot, \C always matches
       line-ending characters. The feature is provided in  Perl	 in  order  to
       match individual bytes in UTF-8 mode, but it is unclear how it can use‐
       fully be used. Because \C breaks up  characters	into  individual  data
       units,  matching	 one unit with \C in a UTF mode means that the rest of
       the string may start with a malformed UTF character. This has undefined
       results, because PCRE assumes that it is dealing with valid UTF strings
       (and by default it checks this at the start of  processing  unless  the
       PCRE_NO_UTF8_CHECK,  PCRE_NO_UTF16_CHECK	 or PCRE_NO_UTF32_CHECK option
       is used).

       PCRE does not allow \C to appear in  lookbehind	assertions  (described
       below)  in  a UTF mode, because this would make it impossible to calcu‐
       late the length of the lookbehind.

       In general, the \C escape sequence is best avoided. However, one way of
       using  it that avoids the problem of malformed UTF characters is to use
       a lookahead to check the length of the next character, as in this  pat‐
       tern,  which  could be used with a UTF-8 string (ignore white space and
       line breaks):

	 (?| (?=[\x00-\x7f])(\C) |
	     (?=[\x80-\x{7ff}])(\C)(\C) |
	     (?=[\x{800}-\x{ffff}])(\C)(\C)(\C) |
	     (?=[\x{10000}-\x{1fffff}])(\C)(\C)(\C)(\C))

       A group that starts with (?| resets the capturing  parentheses  numbers
       in  each	 alternative  (see  "Duplicate Subpattern Numbers" below). The
       assertions at the start of each branch check the next  UTF-8  character
       for  values  whose encoding uses 1, 2, 3, or 4 bytes, respectively. The
       character's individual bytes are then captured by the appropriate  num‐
       ber of groups.

SQUARE BRACKETS AND CHARACTER CLASSES

       An opening square bracket introduces a character class, terminated by a
       closing square bracket. A closing square bracket on its own is not spe‐
       cial by default.	 However, if the PCRE_JAVASCRIPT_COMPAT option is set,
       a lone closing square bracket causes a compile-time error. If a closing
       square  bracket	is required as a member of the class, it should be the
       first data character in the class  (after  an  initial  circumflex,  if
       present) or escaped with a backslash.

       A  character  class matches a single character in the subject. In a UTF
       mode, the character may be more than one	 data  unit  long.  A  matched
       character must be in the set of characters defined by the class, unless
       the first character in the class definition is a circumflex,  in	 which
       case the subject character must not be in the set defined by the class.
       If a circumflex is actually required as a member of the	class,	ensure
       it is not the first character, or escape it with a backslash.

       For  example, the character class [aeiou] matches any lower case vowel,
       while [^aeiou] matches any character that is not a  lower  case	vowel.
       Note that a circumflex is just a convenient notation for specifying the
       characters that are in the class by enumerating those that are  not.  A
       class  that starts with a circumflex is not an assertion; it still con‐
       sumes a character from the subject string, and therefore	 it  fails  if
       the current pointer is at the end of the string.

       In UTF-8 (UTF-16, UTF-32) mode, characters with values greater than 255
       (0xffff) can be included in a class as a literal string of data	units,
       or by using the \x{ escaping mechanism.

       When  caseless  matching	 is set, any letters in a class represent both
       their upper case and lower case versions, so for	 example,  a  caseless
       [aeiou]	matches	 "A"  as well as "a", and a caseless [^aeiou] does not
       match "A", whereas a caseful version would. In a UTF mode, PCRE	always
       understands  the	 concept  of case for characters whose values are less
       than 128, so caseless matching is always possible. For characters  with
       higher  values,	the  concept  of case is supported if PCRE is compiled
       with Unicode property support, but not otherwise.  If you want  to  use
       caseless	 matching in a UTF mode for characters 128 and above, you must
       ensure that PCRE is compiled with Unicode property support as  well  as
       with UTF support.

       Characters  that	 might	indicate  line breaks are never treated in any
       special way  when  matching  character  classes,	 whatever  line-ending
       sequence	 is  in	 use,  and  whatever  setting  of  the PCRE_DOTALL and
       PCRE_MULTILINE options is used. A class such as [^a] always matches one
       of these characters.

       The  minus (hyphen) character can be used to specify a range of charac‐
       ters in a character  class.  For	 example,  [d-m]  matches  any	letter
       between	d  and	m,  inclusive.	If  a minus character is required in a
       class, it must be escaped with a backslash  or  appear  in  a  position
       where  it cannot be interpreted as indicating a range, typically as the
       first or last character in the class, or immediately after a range. For
       example,	 [b-d-z] matches letters in the range b to d, a hyphen charac‐
       ter, or z.

       It is not possible to have the literal character "]" as the end charac‐
       ter  of a range. A pattern such as [W-]46] is interpreted as a class of
       two characters ("W" and "-") followed by a literal string "46]", so  it
       would  match  "W46]"  or	 "-46]". However, if the "]" is escaped with a
       backslash it is interpreted as the end of range, so [W-\]46] is	inter‐
       preted  as a class containing a range followed by two other characters.
       The octal or hexadecimal representation of "]" can also be used to  end
       a range.

       An  error  is  generated	 if  a POSIX character class (see below) or an
       escape sequence other than one that defines a single character  appears
       at  a  point  where  a range ending character is expected. For example,
       [z-\xff] is valid, but [A-\d] and [A-[:digit:]] are not.

       Ranges operate in the collating sequence of character values. They  can
       also   be  used	for  characters	 specified  numerically,  for  example
       [\000-\037]. Ranges can include any characters that are valid  for  the
       current mode.

       If a range that includes letters is used when caseless matching is set,
       it matches the letters in either case. For example, [W-c] is equivalent
       to  [][\\^_`wxyzabc],  matched  caselessly,  and	 in a non-UTF mode, if
       character tables for a French locale are in  use,  [\xc8-\xcb]  matches
       accented	 E  characters	in both cases. In UTF modes, PCRE supports the
       concept of case for characters with values greater than 128  only  when
       it is compiled with Unicode property support.

       The  character escape sequences \d, \D, \h, \H, \p, \P, \s, \S, \v, \V,
       \w, and \W may appear in a character class, and add the characters that
       they  match to the class. For example, [\dABCDEF] matches any hexadeci‐
       mal digit. In UTF modes, the PCRE_UCP option affects  the  meanings  of
       \d,  \s,	 \w  and  their upper case partners, just as it does when they
       appear outside a character class, as described in the section  entitled
       "Generic character types" above. The escape sequence \b has a different
       meaning inside a character class; it matches the	 backspace  character.
       The  sequences  \B,  \N,	 \R, and \X are not special inside a character
       class. Like any other unrecognized escape sequences, they  are  treated
       as  the literal characters "B", "N", "R", and "X" by default, but cause
       an error if the PCRE_EXTRA option is set.

       A circumflex can conveniently be used with  the	upper  case  character
       types  to specify a more restricted set of characters than the matching
       lower case type.	 For example, the class [^\W_] matches any  letter  or
       digit, but not underscore, whereas [\w] includes underscore. A positive
       character class should be read as "something OR something OR ..." and a
       negative class as "NOT something AND NOT something AND NOT ...".

       The  only  metacharacters  that are recognized in character classes are
       backslash, hyphen (only where it can be	interpreted  as	 specifying  a
       range),	circumflex  (only  at the start), opening square bracket (only
       when it can be interpreted as introducing a POSIX class name, or for  a
       special	compatibility  feature	-  see the next two sections), and the
       terminating  closing  square  bracket.  However,	 escaping  other  non-
       alphanumeric characters does no harm.

POSIX CHARACTER CLASSES

       Perl supports the POSIX notation for character classes. This uses names
       enclosed by [: and :] within the enclosing square brackets.  PCRE  also
       supports this notation. For example,

	 [01[:alpha:]%]

       matches "0", "1", any alphabetic character, or "%". The supported class
       names are:

	 alnum	  letters and digits
	 alpha	  letters
	 ascii	  character codes 0 - 127
	 blank	  space or tab only
	 cntrl	  control characters
	 digit	  decimal digits (same as \d)
	 graph	  printing characters, excluding space
	 lower	  lower case letters
	 print	  printing characters, including space
	 punct	  printing characters, excluding letters and digits and space
	 space	  white space (the same as \s from PCRE 8.34)
	 upper	  upper case letters
	 word	  "word" characters (same as \w)
	 xdigit	  hexadecimal digits

       The default "space" characters are HT (9), LF (10), VT (11),  FF	 (12),
       CR  (13),  and space (32). If locale-specific matching is taking place,
       the list of space characters may be different; there may	 be  fewer  or
       more of them. "Space" used to be different to \s, which did not include
       VT, for Perl compatibility.  However, Perl changed at release 5.18, and
       PCRE  followed  at release 8.34.	 "Space" and \s now match the same set
       of characters.

       The name "word" is a Perl extension, and "blank"	 is  a	GNU  extension
       from  Perl  5.8. Another Perl extension is negation, which is indicated
       by a ^ character after the colon. For example,

	 [12[:^digit:]]

       matches "1", "2", or any non-digit. PCRE (and Perl) also recognize  the
       POSIX syntax [.ch.] and [=ch=] where "ch" is a "collating element", but
       these are not supported, and an error is given if they are encountered.

       By default, characters with values greater than 128 do not match any of
       the  POSIX character classes. However, if the PCRE_UCP option is passed
       to pcre_compile(), some of the classes  are  changed  so	 that  Unicode
       character  properties  are  used. This is achieved by replacing certain
       POSIX classes by other sequences, as follows:

	 [:alnum:]  becomes  \p{Xan}
	 [:alpha:]  becomes  \p{L}
	 [:blank:]  becomes  \h
	 [:digit:]  becomes  \p{Nd}
	 [:lower:]  becomes  \p{Ll}
	 [:space:]  becomes  \p{Xps}
	 [:upper:]  becomes  \p{Lu}
	 [:word:]   becomes  \p{Xwd}

       Negated versions, such as [:^alpha:] use \P instead of \p. Three	 other
       POSIX classes are handled specially in UCP mode:

       [:graph:] This  matches	characters that have glyphs that mark the page
		 when printed. In Unicode property terms, it matches all char‐
		 acters with the L, M, N, P, S, or Cf properties, except for:

		   U+061C	    Arabic Letter Mark
		   U+180E	    Mongolian Vowel Separator
		   U+2066 - U+2069  Various "isolate"s

       [:print:] This  matches	the  same  characters  as [:graph:] plus space
		 characters that are not controls, that	 is,  characters  with
		 the Zs property.

       [:punct:] This matches all characters that have the Unicode P (punctua‐
		 tion) property, plus those characters whose code  points  are
		 less than 128 that have the S (Symbol) property.

       The  other  POSIX classes are unchanged, and match only characters with
       code points less than 128.

COMPATIBILITY FEATURE FOR WORD BOUNDARIES

       In the POSIX.2 compliant library that was included in 4.4BSD Unix,  the
       ugly  syntax  [[:<:]]  and [[:>:]] is used for matching "start of word"
       and "end of word". PCRE treats these items as follows:

	 [[:<:]]  is converted to  \b(?=\w)
	 [[:>:]]  is converted to  \b(?<=\w)

       Only these exact character sequences are recognized. A sequence such as
       [a[:<:]b]  provokes  error  for	an unrecognized POSIX class name. This
       support is not compatible with Perl. It is provided to help  migrations
       from other environments, and is best not used in any new patterns. Note
       that \b matches at the start and the end of a word (see "Simple	asser‐
       tions"  above),	and in a Perl-style pattern the preceding or following
       character normally shows which is wanted,  without  the	need  for  the
       assertions  that	 are used above in order to give exactly the POSIX be‐
       haviour.

VERTICAL BAR

       Vertical bar characters are used to separate alternative patterns.  For
       example, the pattern

	 gilbert|sullivan

       matches	either "gilbert" or "sullivan". Any number of alternatives may
       appear, and an empty  alternative  is  permitted	 (matching  the	 empty
       string). The matching process tries each alternative in turn, from left
       to right, and the first one that succeeds is used. If the  alternatives
       are  within a subpattern (defined below), "succeeds" means matching the
       rest of the main pattern as well as the alternative in the subpattern.

INTERNAL OPTION SETTING

       The settings of the  PCRE_CASELESS,  PCRE_MULTILINE,  PCRE_DOTALL,  and
       PCRE_EXTENDED  options  (which are Perl-compatible) can be changed from
       within the pattern by  a	 sequence  of  Perl  option  letters  enclosed
       between "(?" and ")".  The option letters are

	 i  for PCRE_CASELESS
	 m  for PCRE_MULTILINE
	 s  for PCRE_DOTALL
	 x  for PCRE_EXTENDED

       For example, (?im) sets caseless, multiline matching. It is also possi‐
       ble to unset these options by preceding the letter with a hyphen, and a
       combined	 setting and unsetting such as (?im-sx), which sets PCRE_CASE‐
       LESS and PCRE_MULTILINE while unsetting PCRE_DOTALL and	PCRE_EXTENDED,
       is  also	 permitted.  If	 a  letter  appears  both before and after the
       hyphen, the option is unset.

       The PCRE-specific options PCRE_DUPNAMES, PCRE_UNGREEDY, and  PCRE_EXTRA
       can  be changed in the same way as the Perl-compatible options by using
       the characters J, U and X respectively.

       When one of these option changes occurs at  top	level  (that  is,  not
       inside  subpattern parentheses), the change applies to the remainder of
       the pattern that follows. If the change is placed right at the start of
       a pattern, PCRE extracts it into the global options (and it will there‐
       fore show up in data extracted by the pcre_fullinfo() function).

       An option change within a subpattern (see below for  a  description  of
       subpatterns)  affects only that part of the subpattern that follows it,
       so

	 (a(?i)b)c

       matches abc and aBc and no other strings (assuming PCRE_CASELESS is not
       used).	By  this means, options can be made to have different settings
       in different parts of the pattern. Any changes made in one  alternative
       do  carry  on  into subsequent branches within the same subpattern. For
       example,

	 (a(?i)b|c)

       matches "ab", "aB", "c", and "C", even though  when  matching  "C"  the
       first  branch  is  abandoned before the option setting. This is because
       the effects of option settings happen at compile time. There  would  be
       some very weird behaviour otherwise.

       Note:  There  are  other	 PCRE-specific	options that can be set by the
       application when the compiling or matching  functions  are  called.  In
       some  cases  the	 pattern can contain special leading sequences such as
       (*CRLF) to override what the application	 has  set  or  what  has  been
       defaulted.   Details   are  given  in  the  section  entitled  "Newline
       sequences" above. There are also the  (*UTF8),  (*UTF16),(*UTF32),  and
       (*UCP)  leading sequences that can be used to set UTF and Unicode prop‐
       erty modes; they are equivalent to setting the  PCRE_UTF8,  PCRE_UTF16,
       PCRE_UTF32  and the PCRE_UCP options, respectively. The (*UTF) sequence
       is a generic version that can be used with any of the  libraries.  How‐
       ever,  the  application	can set the PCRE_NEVER_UTF option, which locks
       out the use of the (*UTF) sequences.

SUBPATTERNS

       Subpatterns are delimited by parentheses (round brackets), which can be
       nested.	Turning part of a pattern into a subpattern does two things:

       1. It localizes a set of alternatives. For example, the pattern

	 cat(aract|erpillar|)

       matches	"cataract",  "caterpillar", or "cat". Without the parentheses,
       it would match "cataract", "erpillar" or an empty string.

       2. It sets up the subpattern as	a  capturing  subpattern.  This	 means
       that,  when  the	 whole	pattern	 matches,  that portion of the subject
       string that matched the subpattern is passed back to the caller via the
       ovector	argument  of  the matching function. (This applies only to the
       traditional matching functions; the DFA matching functions do not  sup‐
       port capturing.)

       Opening parentheses are counted from left to right (starting from 1) to
       obtain numbers for the  capturing  subpatterns.	For  example,  if  the
       string "the red king" is matched against the pattern

	 the ((red|white) (king|queen))

       the captured substrings are "red king", "red", and "king", and are num‐
       bered 1, 2, and 3, respectively.

       The fact that plain parentheses fulfil  two  functions  is  not	always
       helpful.	  There are often times when a grouping subpattern is required
       without a capturing requirement. If an opening parenthesis is  followed
       by  a question mark and a colon, the subpattern does not do any captur‐
       ing, and is not counted when computing the  number  of  any  subsequent
       capturing  subpatterns. For example, if the string "the white queen" is
       matched against the pattern

	 the ((?:red|white) (king|queen))

       the captured substrings are "white queen" and "queen", and are numbered
       1 and 2. The maximum number of capturing subpatterns is 65535.

       As  a  convenient shorthand, if any option settings are required at the
       start of a non-capturing subpattern,  the  option  letters  may	appear
       between the "?" and the ":". Thus the two patterns

	 (?i:saturday|sunday)
	 (?:(?i)saturday|sunday)

       match exactly the same set of strings. Because alternative branches are
       tried from left to right, and options are not reset until  the  end  of
       the  subpattern is reached, an option setting in one branch does affect
       subsequent branches, so the above patterns match "SUNDAY"  as  well  as
       "Saturday".

DUPLICATE SUBPATTERN NUMBERS

       Perl 5.10 introduced a feature whereby each alternative in a subpattern
       uses the same numbers for its capturing parentheses. Such a  subpattern
       starts  with (?| and is itself a non-capturing subpattern. For example,
       consider this pattern:

	 (?|(Sat)ur|(Sun))day

       Because the two alternatives are inside a (?| group, both sets of  cap‐
       turing  parentheses  are	 numbered one. Thus, when the pattern matches,
       you can look at captured substring number  one,	whichever  alternative
       matched.	 This  construct  is useful when you want to capture part, but
       not all, of one of a number of alternatives. Inside a (?| group, paren‐
       theses  are  numbered as usual, but the number is reset at the start of
       each branch. The numbers of any capturing parentheses that  follow  the
       subpattern  start after the highest number used in any branch. The fol‐
       lowing example is taken from the Perl documentation. The numbers under‐
       neath show in which buffer the captured content will be stored.

	 # before  ---------------branch-reset----------- after
	 / ( a )  (?| x ( y ) z | (p (q) r) | (t) u (v) ) ( z ) /x
	 # 1		2	  2  3	      2	    3	  4

       A  back	reference  to a numbered subpattern uses the most recent value
       that is set for that number by any subpattern.  The  following  pattern
       matches "abcabc" or "defdef":

	 /(?|(abc)|(def))\1/

       In  contrast,  a subroutine call to a numbered subpattern always refers
       to the first one in the pattern with the given  number.	The  following
       pattern matches "abcabc" or "defabc":

	 /(?|(abc)|(def))(?1)/

       If  a condition test for a subpattern's having matched refers to a non-
       unique number, the test is true if any of the subpatterns of that  num‐
       ber have matched.

       An  alternative approach to using this "branch reset" feature is to use
       duplicate named subpatterns, as described in the next section.

NAMED SUBPATTERNS

       Identifying capturing parentheses by number is simple, but  it  can  be
       very  hard  to keep track of the numbers in complicated regular expres‐
       sions. Furthermore, if an  expression  is  modified,  the  numbers  may
       change.	To help with this difficulty, PCRE supports the naming of sub‐
       patterns. This feature was not added to Perl until release 5.10. Python
       had  the	 feature earlier, and PCRE introduced it at release 4.0, using
       the Python syntax. PCRE now supports both the Perl and the Python  syn‐
       tax.  Perl  allows  identically	numbered subpatterns to have different
       names, but PCRE does not.

       In PCRE, a subpattern can be named in one of three  ways:  (?<name>...)
       or  (?'name'...)	 as in Perl, or (?P<name>...) as in Python. References
       to capturing parentheses from other parts of the pattern, such as  back
       references,  recursion,	and conditions, can be made by name as well as
       by number.

       Names consist of up to 32 alphanumeric characters and underscores,  but
       must  start  with  a  non-digit.	 Named capturing parentheses are still
       allocated numbers as well as names, exactly as if the  names  were  not
       present.	 The PCRE API provides function calls for extracting the name-
       to-number translation table from a compiled pattern. There  is  also  a
       convenience function for extracting a captured substring by name.

       By  default, a name must be unique within a pattern, but it is possible
       to relax this constraint by setting the PCRE_DUPNAMES option at compile
       time.  (Duplicate  names are also always permitted for subpatterns with
       the same number, set up as described in the previous  section.)	Dupli‐
       cate  names  can	 be useful for patterns where only one instance of the
       named parentheses can match. Suppose you want to match the  name	 of  a
       weekday,	 either as a 3-letter abbreviation or as the full name, and in
       both cases you want to extract the abbreviation. This pattern (ignoring
       the line breaks) does the job:

	 (?<DN>Mon|Fri|Sun)(?:day)?|
	 (?<DN>Tue)(?:sday)?|
	 (?<DN>Wed)(?:nesday)?|
	 (?<DN>Thu)(?:rsday)?|
	 (?<DN>Sat)(?:urday)?

       There  are  five capturing substrings, but only one is ever set after a
       match.  (An alternative way of solving this problem is to use a "branch
       reset" subpattern, as described in the previous section.)

       The  convenience	 function  for extracting the data by name returns the
       substring for the first (and in this example, the only)	subpattern  of
       that  name  that	 matched.  This saves searching to find which numbered
       subpattern it was.

       If you make a back reference to	a  non-unique  named  subpattern  from
       elsewhere  in the pattern, the subpatterns to which the name refers are
       checked in the order in which they appear in the overall	 pattern.  The
       first one that is set is used for the reference. For example, this pat‐
       tern matches both "foofoo" and "barbar" but not "foobar" or "barfoo":

	 (?:(?<n>foo)|(?<n>bar))\k<n>

       If you make a subroutine call to a non-unique named subpattern, the one
       that  corresponds  to  the first occurrence of the name is used. In the
       absence of duplicate numbers (see the previous section) this is the one
       with the lowest number.

       If you use a named reference in a condition test (see the section about
       conditions below), either to check whether a subpattern has matched, or
       to  check for recursion, all subpatterns with the same name are tested.
       If the condition is true for any one of them, the overall condition  is
       true.  This  is	the  same  behaviour as testing by number. For further
       details of the interfaces  for  handling	 named	subpatterns,  see  the
       pcreapi documentation.

       Warning: You cannot use different names to distinguish between two sub‐
       patterns with the same number because PCRE uses only the	 numbers  when
       matching. For this reason, an error is given at compile time if differ‐
       ent names are given to subpatterns with the same number.	 However,  you
       can always give the same name to subpatterns with the same number, even
       when PCRE_DUPNAMES is not set.

REPETITION

       Repetition is specified by quantifiers, which can  follow  any  of  the
       following items:

	 a literal data character
	 the dot metacharacter
	 the \C escape sequence
	 the \X escape sequence
	 the \R escape sequence
	 an escape such as \d or \pL that matches a single character
	 a character class
	 a back reference (see next section)
	 a parenthesized subpattern (including assertions)
	 a subroutine call to a subpattern (recursive or otherwise)

       The  general repetition quantifier specifies a minimum and maximum num‐
       ber of permitted matches, by giving the two numbers in  curly  brackets
       (braces),  separated  by	 a comma. The numbers must be less than 65536,
       and the first must be less than or equal to the second. For example:

	 z{2,4}

       matches "zz", "zzz", or "zzzz". A closing brace on its  own  is	not  a
       special	character.  If	the second number is omitted, but the comma is
       present, there is no upper limit; if the second number  and  the	 comma
       are  both omitted, the quantifier specifies an exact number of required
       matches. Thus

	 [aeiou]{3,}

       matches at least 3 successive vowels, but may match many more, while

	 \d{8}

       matches exactly 8 digits. An opening curly bracket that	appears	 in  a
       position	 where a quantifier is not allowed, or one that does not match
       the syntax of a quantifier, is taken as a literal character. For	 exam‐
       ple, {,6} is not a quantifier, but a literal string of four characters.

       In UTF modes, quantifiers apply to characters rather than to individual
       data units. Thus, for example, \x{100}{2} matches two characters,  each
       of which is represented by a two-byte sequence in a UTF-8 string. Simi‐
       larly, \X{3} matches three Unicode extended grapheme clusters, each  of
       which  may  be  several	data  units long (and they may be of different
       lengths).

       The quantifier {0} is permitted, causing the expression to behave as if
       the previous item and the quantifier were not present. This may be use‐
       ful for subpatterns that are referenced as subroutines  from  elsewhere
       in the pattern (but see also the section entitled "Defining subpatterns
       for use by reference only" below). Items other  than  subpatterns  that
       have a {0} quantifier are omitted from the compiled pattern.

       For  convenience, the three most common quantifiers have single-charac‐
       ter abbreviations:

	 *    is equivalent to {0,}
	 +    is equivalent to {1,}
	 ?    is equivalent to {0,1}

       It is possible to construct infinite loops by  following	 a  subpattern
       that can match no characters with a quantifier that has no upper limit,
       for example:

	 (a?)*

       Earlier versions of Perl and PCRE used to give an error at compile time
       for  such  patterns. However, because there are cases where this can be
       useful, such patterns are now accepted, but if any  repetition  of  the
       subpattern  does in fact match no characters, the loop is forcibly bro‐
       ken.

       By default, the quantifiers are "greedy", that is, they match  as  much
       as  possible  (up  to  the  maximum number of permitted times), without
       causing the rest of the pattern to fail. The classic example  of	 where
       this gives problems is in trying to match comments in C programs. These
       appear between /* and */ and within the comment,	 individual  *	and  /
       characters  may	appear. An attempt to match C comments by applying the
       pattern

	 /\*.*\*/

       to the string

	 /* first comment */  not comment  /* second comment */

       fails, because it matches the entire string owing to the greediness  of
       the .*  item.

       However,	 if  a quantifier is followed by a question mark, it ceases to
       be greedy, and instead matches the minimum number of times possible, so
       the pattern

	 /\*.*?\*/

       does  the  right	 thing with the C comments. The meaning of the various
       quantifiers is not otherwise changed,  just  the	 preferred  number  of
       matches.	  Do  not  confuse this use of question mark with its use as a
       quantifier in its own right. Because it has two uses, it can  sometimes
       appear doubled, as in

	 \d??\d

       which matches one digit by preference, but can match two if that is the
       only way the rest of the pattern matches.

       If the PCRE_UNGREEDY option is set (an option that is not available  in
       Perl),  the  quantifiers are not greedy by default, but individual ones
       can be made greedy by following them with a  question  mark.  In	 other
       words, it inverts the default behaviour.

       When  a	parenthesized  subpattern  is quantified with a minimum repeat
       count that is greater than 1 or with a limited maximum, more memory  is
       required	 for  the  compiled  pattern, in proportion to the size of the
       minimum or maximum.

       If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equiv‐
       alent  to  Perl's  /s) is set, thus allowing the dot to match newlines,
       the pattern is implicitly anchored, because whatever  follows  will  be
       tried  against every character position in the subject string, so there
       is no point in retrying the overall match at  any  position  after  the
       first.  PCRE  normally treats such a pattern as though it were preceded
       by \A.

       In cases where it is known that the subject  string  contains  no  new‐
       lines,  it  is  worth setting PCRE_DOTALL in order to obtain this opti‐
       mization, or alternatively using ^ to indicate anchoring explicitly.

       However, there are some cases where the optimization  cannot  be	 used.
       When .*	is inside capturing parentheses that are the subject of a back
       reference elsewhere in the pattern, a match at the start may fail where
       a later one succeeds. Consider, for example:

	 (.*)abc\1

       If  the subject is "xyz123abc123" the match point is the fourth charac‐
       ter. For this reason, such a pattern is not implicitly anchored.

       Another case where implicit anchoring is not applied is when the	 lead‐
       ing  .* is inside an atomic group. Once again, a match at the start may
       fail where a later one succeeds. Consider this pattern:

	 (?>.*?a)b

       It matches "ab" in the subject "aab". The use of the backtracking  con‐
       trol verbs (*PRUNE) and (*SKIP) also disable this optimization.

       When a capturing subpattern is repeated, the value captured is the sub‐
       string that matched the final iteration. For example, after

	 (tweedle[dume]{3}\s*)+

       has matched "tweedledum tweedledee" the value of the captured substring
       is  "tweedledee".  However,  if there are nested capturing subpatterns,
       the corresponding captured values may have been set in previous	itera‐
       tions. For example, after

	 /(a|(b))+/

       matches "aba" the value of the second captured substring is "b".

ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS

       With  both  maximizing ("greedy") and minimizing ("ungreedy" or "lazy")
       repetition, failure of what follows normally causes the	repeated  item
       to  be  re-evaluated to see if a different number of repeats allows the
       rest of the pattern to match. Sometimes it is useful to	prevent	 this,
       either  to  change the nature of the match, or to cause it fail earlier
       than it otherwise might, when the author of the pattern knows there  is
       no point in carrying on.

       Consider,  for  example, the pattern \d+foo when applied to the subject
       line

	 123456bar

       After matching all 6 digits and then failing to match "foo", the normal
       action  of  the matcher is to try again with only 5 digits matching the
       \d+ item, and then with	4,  and	 so  on,  before  ultimately  failing.
       "Atomic	grouping"  (a  term taken from Jeffrey Friedl's book) provides
       the means for specifying that once a subpattern has matched, it is  not
       to be re-evaluated in this way.

       If  we  use atomic grouping for the previous example, the matcher gives
       up immediately on failing to match "foo" the first time.	 The  notation
       is a kind of special parenthesis, starting with (?> as in this example:

	 (?>\d+)foo

       This  kind  of  parenthesis "locks up" the  part of the pattern it con‐
       tains once it has matched, and a failure further into  the  pattern  is
       prevented  from	backtracking into it. Backtracking past it to previous
       items, however, works as normal.

       An alternative description is that a subpattern of  this	 type  matches
       the  string  of	characters  that an identical standalone pattern would
       match, if anchored at the current point in the subject string.

       Atomic grouping subpatterns are not capturing subpatterns. Simple cases
       such as the above example can be thought of as a maximizing repeat that
       must swallow everything it can. So, while both \d+ and  \d+?  are  pre‐
       pared  to  adjust  the number of digits they match in order to make the
       rest of the pattern match, (?>\d+) can only match an entire sequence of
       digits.

       Atomic  groups in general can of course contain arbitrarily complicated
       subpatterns, and can be nested. However, when  the  subpattern  for  an
       atomic group is just a single repeated item, as in the example above, a
       simpler notation, called a "possessive quantifier" can  be  used.  This
       consists	 of  an	 additional  + character following a quantifier. Using
       this notation, the previous example can be rewritten as

	 \d++foo

       Note that a possessive quantifier can be used with an entire group, for
       example:

	 (abc|xyz){2,3}+

       Possessive   quantifiers	  are	always	greedy;	 the  setting  of  the
       PCRE_UNGREEDY option is ignored. They are a convenient notation for the
       simpler	forms  of atomic group. However, there is no difference in the
       meaning of a possessive quantifier and  the  equivalent	atomic	group,
       though  there  may  be a performance difference; possessive quantifiers
       should be slightly faster.

       The possessive quantifier syntax is an extension to the Perl  5.8  syn‐
       tax.   Jeffrey  Friedl  originated the idea (and the name) in the first
       edition of his book. Mike McCloskey liked it, so implemented it when he
       built  Sun's Java package, and PCRE copied it from there. It ultimately
       found its way into Perl at release 5.10.

       PCRE has an optimization that automatically "possessifies" certain sim‐
       ple  pattern  constructs.  For  example, the sequence A+B is treated as
       A++B because there is no point in backtracking into a sequence  of  A's
       when B must follow.

       When  a	pattern	 contains an unlimited repeat inside a subpattern that
       can itself be repeated an unlimited number of  times,  the  use	of  an
       atomic  group  is  the  only way to avoid some failing matches taking a
       very long time indeed. The pattern

	 (\D+|<\d+>)*[!?]

       matches an unlimited number of substrings that either consist  of  non-
       digits,	or  digits  enclosed in <>, followed by either ! or ?. When it
       matches, it runs quickly. However, if it is applied to

	 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

       it takes a long time before reporting  failure.	This  is  because  the
       string  can be divided between the internal \D+ repeat and the external
       * repeat in a large number of ways, and all  have  to  be  tried.  (The
       example	uses  [!?]  rather than a single character at the end, because
       both PCRE and Perl have an optimization that allows  for	 fast  failure
       when  a single character is used. They remember the last single charac‐
       ter that is required for a match, and fail early if it is  not  present
       in  the	string.)  If  the pattern is changed so that it uses an atomic
       group, like this:

	 ((?>\D+)|<\d+>)*[!?]

       sequences of non-digits cannot be broken, and failure happens quickly.

BACK REFERENCES

       Outside a character class, a backslash followed by a digit greater than
       0 (and possibly further digits) is a back reference to a capturing sub‐
       pattern earlier (that is, to its left) in the pattern,  provided	 there
       have been that many previous capturing left parentheses.

       However, if the decimal number following the backslash is less than 10,
       it is always taken as a back reference, and causes  an  error  only  if
       there  are  not that many capturing left parentheses in the entire pat‐
       tern. In other words, the parentheses that are referenced need  not  be
       to  the left of the reference for numbers less than 10. A "forward back
       reference" of this type can make sense when a  repetition  is  involved
       and  the	 subpattern to the right has participated in an earlier itera‐
       tion.

       It is not possible to have a numerical "forward back  reference"	 to  a
       subpattern  whose  number  is  10  or  more using this syntax because a
       sequence such as \50 is interpreted as a character  defined  in	octal.
       See the subsection entitled "Non-printing characters" above for further
       details of the handling of digits following a backslash.	 There	is  no
       such  problem  when named parentheses are used. A back reference to any
       subpattern is possible using named parentheses (see below).

       Another way of avoiding the ambiguity inherent in  the  use  of	digits
       following  a  backslash	is  to use the \g escape sequence. This escape
       must be followed by an unsigned number or a negative number, optionally
       enclosed in braces. These examples are all identical:

	 (ring), \1
	 (ring), \g1
	 (ring), \g{1}

       An  unsigned number specifies an absolute reference without the ambigu‐
       ity that is present in the older syntax. It is also useful when literal
       digits follow the reference. A negative number is a relative reference.
       Consider this example:

	 (abc(def)ghi)\g{-1}

       The sequence \g{-1} is a reference to the most recently started captur‐
       ing subpattern before \g, that is, is it equivalent to \2 in this exam‐
       ple.  Similarly, \g{-2} would be equivalent to \1. The use of  relative
       references  can	be helpful in long patterns, and also in patterns that
       are created by  joining	together  fragments  that  contain  references
       within themselves.

       A  back	reference matches whatever actually matched the capturing sub‐
       pattern in the current subject string, rather  than  anything  matching
       the subpattern itself (see "Subpatterns as subroutines" below for a way
       of doing that). So the pattern

	 (sens|respons)e and \1ibility

       matches "sense and sensibility" and "response and responsibility",  but
       not  "sense and responsibility". If caseful matching is in force at the
       time of the back reference, the case of letters is relevant. For	 exam‐
       ple,

	 ((?i)rah)\s+\1

       matches	"rah  rah"  and	 "RAH RAH", but not "RAH rah", even though the
       original capturing subpattern is matched caselessly.

       There are several different ways of writing back	 references  to	 named
       subpatterns.  The  .NET syntax \k{name} and the Perl syntax \k<name> or
       \k'name' are supported, as is the Python syntax (?P=name). Perl	5.10's
       unified back reference syntax, in which \g can be used for both numeric
       and named references, is also supported. We  could  rewrite  the	 above
       example in any of the following ways:

	 (?<p1>(?i)rah)\s+\k<p1>
	 (?'p1'(?i)rah)\s+\k{p1}
	 (?P<p1>(?i)rah)\s+(?P=p1)
	 (?<p1>(?i)rah)\s+\g{p1}

       A  subpattern  that  is	referenced  by	name may appear in the pattern
       before or after the reference.

       There may be more than one back reference to the same subpattern. If  a
       subpattern  has	not actually been used in a particular match, any back
       references to it always fail by default. For example, the pattern

	 (a|(bc))\2

       always fails if it starts to match "a" rather than  "bc".  However,  if
       the PCRE_JAVASCRIPT_COMPAT option is set at compile time, a back refer‐
       ence to an unset value matches an empty string.

       Because there may be many capturing parentheses in a pattern, all  dig‐
       its  following a backslash are taken as part of a potential back refer‐
       ence number.  If the pattern continues with  a  digit  character,  some
       delimiter  must	be  used  to  terminate	 the  back  reference.	If the
       PCRE_EXTENDED option is set, this can be white  space.  Otherwise,  the
       \g{ syntax or an empty comment (see "Comments" below) can be used.

   Recursive back references

       A  back reference that occurs inside the parentheses to which it refers
       fails when the subpattern is first used, so, for example,  (a\1)	 never
       matches.	  However,  such references can be useful inside repeated sub‐
       patterns. For example, the pattern

	 (a|b\1)+

       matches any number of "a"s and also "aba", "ababbaa" etc. At each iter‐
       ation  of  the  subpattern,  the	 back  reference matches the character
       string corresponding to the previous iteration. In order	 for  this  to
       work,  the  pattern must be such that the first iteration does not need
       to match the back reference. This can be done using alternation, as  in
       the example above, or by a quantifier with a minimum of zero.

       Back  references of this type cause the group that they reference to be
       treated as an atomic group.  Once the whole group has been  matched,  a
       subsequent  matching  failure cannot cause backtracking into the middle
       of the group.

ASSERTIONS

       An assertion is a test on the characters	 following  or	preceding  the
       current	matching  point that does not actually consume any characters.
       The simple assertions coded as \b, \B, \A, \G, \Z,  \z,	^  and	$  are
       described above.

       More  complicated  assertions  are  coded as subpatterns. There are two
       kinds: those that look ahead of the current  position  in  the  subject
       string,	and  those  that  look	behind	it. An assertion subpattern is
       matched in the normal way, except that it does not  cause  the  current
       matching position to be changed.

       Assertion  subpatterns are not capturing subpatterns. If such an asser‐
       tion contains capturing subpatterns within it, these  are  counted  for
       the  purposes  of numbering the capturing subpatterns in the whole pat‐
       tern. However, substring capturing is carried  out  only	 for  positive
       assertions. (Perl sometimes, but not always, does do capturing in nega‐
       tive assertions.)

       For compatibility with Perl, assertion  subpatterns  may	 be  repeated;
       though  it  makes  no sense to assert the same thing several times, the
       side effect of capturing parentheses may	 occasionally  be  useful.  In
       practice, there only three cases:

       (1)  If	the  quantifier	 is  {0}, the assertion is never obeyed during
       matching.  However, it may  contain  internal  capturing	 parenthesized
       groups that are called from elsewhere via the subroutine mechanism.

       (2)  If quantifier is {0,n} where n is greater than zero, it is treated
       as if it were {0,1}. At run time, the rest  of  the  pattern  match  is
       tried with and without the assertion, the order depending on the greed‐
       iness of the quantifier.

       (3) If the minimum repetition is greater than zero, the	quantifier  is
       ignored.	  The  assertion  is  obeyed just once when encountered during
       matching.

   Lookahead assertions

       Lookahead assertions start with (?= for positive assertions and (?! for
       negative assertions. For example,

	 \w+(?=;)

       matches	a word followed by a semicolon, but does not include the semi‐
       colon in the match, and

	 foo(?!bar)

       matches any occurrence of "foo" that is not  followed  by  "bar".  Note
       that the apparently similar pattern

	 (?!foo)bar

       does  not  find	an  occurrence	of "bar" that is preceded by something
       other than "foo"; it finds any occurrence of "bar" whatsoever,  because
       the assertion (?!foo) is always true when the next three characters are
       "bar". A lookbehind assertion is needed to achieve the other effect.

       If you want to force a matching failure at some point in a pattern, the
       most  convenient	 way  to  do  it  is with (?!) because an empty string
       always matches, so an assertion that requires there not to be an	 empty
       string must always fail.	 The backtracking control verb (*FAIL) or (*F)
       is a synonym for (?!).

   Lookbehind assertions

       Lookbehind assertions start with (?<= for positive assertions and  (?<!
       for negative assertions. For example,

	 (?<!foo)bar

       does  find  an  occurrence  of "bar" that is not preceded by "foo". The
       contents of a lookbehind assertion are restricted  such	that  all  the
       strings it matches must have a fixed length. However, if there are sev‐
       eral top-level alternatives, they do not all  have  to  have  the  same
       fixed length. Thus

	 (?<=bullock|donkey)

       is permitted, but

	 (?<!dogs?|cats?)

       causes  an  error at compile time. Branches that match different length
       strings are permitted only at the top level of a lookbehind  assertion.
       This is an extension compared with Perl, which requires all branches to
       match the same length of string. An assertion such as

	 (?<=ab(c|de))

       is not permitted, because its single top-level  branch  can  match  two
       different lengths, but it is acceptable to PCRE if rewritten to use two
       top-level branches:

	 (?<=abc|abde)

       In some cases, the escape sequence \K (see above) can be	 used  instead
       of a lookbehind assertion to get round the fixed-length restriction.

       The  implementation  of lookbehind assertions is, for each alternative,
       to temporarily move the current position back by the fixed  length  and
       then try to match. If there are insufficient characters before the cur‐
       rent position, the assertion fails.

       In a UTF mode, PCRE does not allow the \C escape (which matches a  sin‐
       gle  data  unit even in a UTF mode) to appear in lookbehind assertions,
       because it makes it impossible to calculate the length of  the  lookbe‐
       hind.  The \X and \R escapes, which can match different numbers of data
       units, are also not permitted.

       "Subroutine" calls (see below) such as (?2) or (?&X) are	 permitted  in
       lookbehinds,  as	 long as the subpattern matches a fixed-length string.
       Recursion, however, is not supported.

       Possessive quantifiers can  be  used  in	 conjunction  with  lookbehind
       assertions to specify efficient matching of fixed-length strings at the
       end of subject strings. Consider a simple pattern such as

	 abcd$

       when applied to a long string that does	not  match.  Because  matching
       proceeds from left to right, PCRE will look for each "a" in the subject
       and then see if what follows matches the rest of the  pattern.  If  the
       pattern is specified as

	 ^.*abcd$

       the  initial .* matches the entire string at first, but when this fails
       (because there is no following "a"), it backtracks to match all but the
       last  character,	 then all but the last two characters, and so on. Once
       again the search for "a" covers the entire string, from right to	 left,
       so we are no better off. However, if the pattern is written as

	 ^.*+(?<=abcd)

       there  can  be  no backtracking for the .*+ item; it can match only the
       entire string. The subsequent lookbehind assertion does a  single  test
       on  the last four characters. If it fails, the match fails immediately.
       For long strings, this approach makes a significant difference  to  the
       processing time.

   Using multiple assertions

       Several assertions (of any sort) may occur in succession. For example,

	 (?<=\d{3})(?<!999)foo

       matches	"foo" preceded by three digits that are not "999". Notice that
       each of the assertions is applied independently at the  same  point  in
       the  subject  string.  First  there  is a check that the previous three
       characters are all digits, and then there is  a	check  that  the  same
       three characters are not "999".	This pattern does not match "foo" pre‐
       ceded by six characters, the first of which are	digits	and  the  last
       three  of  which	 are not "999". For example, it doesn't match "123abc‐
       foo". A pattern to do that is

	 (?<=\d{3}...)(?<!999)foo

       This time the first assertion looks at the  preceding  six  characters,
       checking that the first three are digits, and then the second assertion
       checks that the preceding three characters are not "999".

       Assertions can be nested in any combination. For example,

	 (?<=(?<!foo)bar)baz

       matches an occurrence of "baz" that is preceded by "bar" which in  turn
       is not preceded by "foo", while

	 (?<=\d{3}(?!999)...)foo

       is  another pattern that matches "foo" preceded by three digits and any
       three characters that are not "999".

CONDITIONAL SUBPATTERNS

       It is possible to cause the matching process to obey a subpattern  con‐
       ditionally  or to choose between two alternative subpatterns, depending
       on the result of an assertion, or whether a specific capturing  subpat‐
       tern  has  already  been matched. The two possible forms of conditional
       subpattern are:

	 (?(condition)yes-pattern)
	 (?(condition)yes-pattern|no-pattern)

       If the condition is satisfied, the yes-pattern is used;	otherwise  the
       no-pattern  (if	present)  is used. If there are more than two alterna‐
       tives in the subpattern, a compile-time error occurs. Each of  the  two
       alternatives may itself contain nested subpatterns of any form, includ‐
       ing  conditional	 subpatterns;  the  restriction	 to  two  alternatives
       applies only at the level of the condition. This pattern fragment is an
       example where the alternatives are complex:

	 (?(1) (A|B|C) | (D | (?(2)E|F) | E) )

       There are four kinds of condition: references  to  subpatterns,	refer‐
       ences to recursion, a pseudo-condition called DEFINE, and assertions.

   Checking for a used subpattern by number

       If  the	text between the parentheses consists of a sequence of digits,
       the condition is true if a capturing subpattern of that number has pre‐
       viously	matched.  If  there is more than one capturing subpattern with
       the same number (see the earlier	 section  about	 duplicate  subpattern
       numbers),  the condition is true if any of them have matched. An alter‐
       native notation is to precede the digits with a plus or minus sign.  In
       this  case, the subpattern number is relative rather than absolute. The
       most recently opened parentheses can be referenced by (?(-1), the  next
       most  recent  by (?(-2), and so on. Inside loops it can also make sense
       to refer to subsequent groups. The next parentheses to be opened can be
       referenced  as (?(+1), and so on. (The value zero in any of these forms
       is not used; it provokes a compile-time error.)

       Consider the following pattern, which  contains	non-significant	 white
       space to make it more readable (assume the PCRE_EXTENDED option) and to
       divide it into three parts for ease of discussion:

	 ( \( )?    [^()]+    (?(1) \) )

       The first part matches an optional opening  parenthesis,	 and  if  that
       character is present, sets it as the first captured substring. The sec‐
       ond part matches one or more characters that are not  parentheses.  The
       third  part  is	a conditional subpattern that tests whether or not the
       first set of parentheses matched. If they  did,	that  is,  if  subject
       started	with an opening parenthesis, the condition is true, and so the
       yes-pattern is executed and a closing parenthesis is  required.	Other‐
       wise,  since no-pattern is not present, the subpattern matches nothing.
       In other words, this pattern matches  a	sequence  of  non-parentheses,
       optionally enclosed in parentheses.

       If  you	were  embedding	 this pattern in a larger one, you could use a
       relative reference:

	 ...other stuff... ( \( )?    [^()]+	(?(-1) \) ) ...

       This makes the fragment independent of the parentheses  in  the	larger
       pattern.

   Checking for a used subpattern by name

       Perl  uses  the	syntax	(?(<name>)...) or (?('name')...) to test for a
       used subpattern by name. For compatibility  with	 earlier  versions  of
       PCRE,  which  had this facility before Perl, the syntax (?(name)...) is
       also recognized.

       Rewriting the above example to use a named subpattern gives this:

	 (?<OPEN> \( )?	   [^()]+    (?(<OPEN>) \) )

       If the name used in a condition of this kind is a duplicate,  the  test
       is  applied to all subpatterns of the same name, and is true if any one
       of them has matched.

   Checking for pattern recursion

       If the condition is the string (R), and there is no subpattern with the
       name  R, the condition is true if a recursive call to the whole pattern
       or any subpattern has been made. If digits or a name preceded by amper‐
       sand follow the letter R, for example:

	 (?(R3)...) or (?(R&name)...)

       the condition is true if the most recent recursion is into a subpattern
       whose number or name is given. This condition does not check the entire
       recursion  stack.  If  the  name	 used in a condition of this kind is a
       duplicate, the test is applied to all subpatterns of the same name, and
       is true if any one of them is the most recent recursion.

       At  "top	 level",  all  these recursion test conditions are false.  The
       syntax for recursive patterns is described below.

   Defining subpatterns for use by reference only

       If the condition is the string (DEFINE), and  there  is	no  subpattern
       with  the  name	DEFINE,	 the  condition is always false. In this case,
       there may be only one alternative  in  the  subpattern.	It  is	always
       skipped	if  control  reaches  this  point  in the pattern; the idea of
       DEFINE is that it can be used to define subroutines that can be	refer‐
       enced  from elsewhere. (The use of subroutines is described below.) For
       example, a pattern to match an IPv4 address  such  as  "192.168.23.245"
       could be written like this (ignore white space and line breaks):

	 (?(DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d) )
	 \b (?&byte) (\.(?&byte)){3} \b

       The  first part of the pattern is a DEFINE group inside which a another
       group named "byte" is defined. This matches an individual component  of
       an  IPv4	 address  (a number less than 256). When matching takes place,
       this part of the pattern is skipped because DEFINE acts	like  a	 false
       condition.  The	rest of the pattern uses references to the named group
       to match the four dot-separated components of an IPv4 address,  insist‐
       ing on a word boundary at each end.

   Assertion conditions

       If  the	condition  is  not  in any of the above formats, it must be an
       assertion.  This may be a positive or negative lookahead or  lookbehind
       assertion.  Consider  this  pattern,  again  containing non-significant
       white space, and with the two alternatives on the second line:

	 (?(?=[^a-z]*[a-z])
	 \d{2}-[a-z]{3}-\d{2}  |  \d{2}-\d{2}-\d{2} )

       The condition  is  a  positive  lookahead  assertion  that  matches  an
       optional	 sequence of non-letters followed by a letter. In other words,
       it tests for the presence of at least one letter in the subject.	 If  a
       letter  is found, the subject is matched against the first alternative;
       otherwise it is	matched	 against  the  second.	This  pattern  matches
       strings	in  one	 of the two forms dd-aaa-dd or dd-dd-dd, where aaa are
       letters and dd are digits.

COMMENTS

       There are two ways of including comments in patterns that are processed
       by PCRE. In both cases, the start of the comment must not be in a char‐
       acter class, nor in the middle of any other sequence of related charac‐
       ters  such  as  (?: or a subpattern name or number. The characters that
       make up a comment play no part in the pattern matching.

       The sequence (?# marks the start of a comment that continues up to  the
       next  closing parenthesis. Nested parentheses are not permitted. If the
       PCRE_EXTENDED option is set, an unescaped # character also introduces a
       comment,	 which	in  this  case continues to immediately after the next
       newline character or character sequence in the pattern.	Which  charac‐
       ters are interpreted as newlines is controlled by the options passed to
       a compiling function or by a special sequence at the start of the  pat‐
       tern, as described in the section entitled "Newline conventions" above.
       Note that the end of this type of comment is a literal newline sequence
       in  the pattern; escape sequences that happen to represent a newline do
       not count. For example, consider this  pattern  when  PCRE_EXTENDED  is
       set, and the default newline convention is in force:

	 abc #comment \n still comment

       On  encountering	 the  # character, pcre_compile() skips along, looking
       for a newline in the pattern. The sequence \n is still literal at  this
       stage,  so  it does not terminate the comment. Only an actual character
       with the code value 0x0a (the default newline) does so.

RECURSIVE PATTERNS

       Consider the problem of matching a string in parentheses, allowing  for
       unlimited  nested  parentheses.	Without the use of recursion, the best
       that can be done is to use a pattern that  matches  up  to  some	 fixed
       depth  of  nesting.  It	is not possible to handle an arbitrary nesting
       depth.

       For some time, Perl has provided a facility that allows regular expres‐
       sions  to recurse (amongst other things). It does this by interpolating
       Perl code in the expression at run time, and the code can refer to  the
       expression itself. A Perl pattern using code interpolation to solve the
       parentheses problem can be created like this:

	 $re = qr{\( (?: (?>[^()]+) | (?p{$re}) )* \)}x;

       The (?p{...}) item interpolates Perl code at run time, and in this case
       refers recursively to the pattern in which it appears.

       Obviously, PCRE cannot support the interpolation of Perl code. Instead,
       it supports special syntax for recursion of  the	 entire	 pattern,  and
       also  for  individual  subpattern  recursion. After its introduction in
       PCRE and Python, this kind of  recursion	 was  subsequently  introduced
       into Perl at release 5.10.

       A  special  item	 that consists of (? followed by a number greater than
       zero and a closing parenthesis is a recursive subroutine	 call  of  the
       subpattern  of  the  given  number, provided that it occurs inside that
       subpattern. (If not, it is a non-recursive subroutine  call,  which  is
       described  in  the  next	 section.)  The special item (?R) or (?0) is a
       recursive call of the entire regular expression.

       This PCRE pattern solves the nested  parentheses	 problem  (assume  the
       PCRE_EXTENDED option is set so that white space is ignored):

	 \( ( [^()]++ | (?R) )* \)

       First  it matches an opening parenthesis. Then it matches any number of
       substrings which can either be a	 sequence  of  non-parentheses,	 or  a
       recursive  match	 of the pattern itself (that is, a correctly parenthe‐
       sized substring).  Finally there is a closing parenthesis. Note the use
       of a possessive quantifier to avoid backtracking into sequences of non-
       parentheses.

       If this were part of a larger pattern, you would not  want  to  recurse
       the entire pattern, so instead you could use this:

	 ( \( ( [^()]++ | (?1) )* \) )

       We  have	 put the pattern into parentheses, and caused the recursion to
       refer to them instead of the whole pattern.

       In a larger pattern,  keeping  track  of	 parenthesis  numbers  can  be
       tricky.	This is made easier by the use of relative references. Instead
       of (?1) in the pattern above you can write (?-2) to refer to the second
       most  recently  opened  parentheses  preceding  the recursion. In other
       words, a negative number counts capturing  parentheses  leftwards  from
       the point at which it is encountered.

       It  is  also  possible  to refer to subsequently opened parentheses, by
       writing references such as (?+2). However, these	 cannot	 be  recursive
       because	the  reference	is  not inside the parentheses that are refer‐
       enced. They are always non-recursive subroutine calls, as described  in
       the next section.

       An  alternative	approach is to use named parentheses instead. The Perl
       syntax for this is (?&name); PCRE's earlier syntax  (?P>name)  is  also
       supported. We could rewrite the above example as follows:

	 (?<pn> \( ( [^()]++ | (?&pn) )* \) )

       If  there  is more than one subpattern with the same name, the earliest
       one is used.

       This particular example pattern that we have been looking  at  contains
       nested unlimited repeats, and so the use of a possessive quantifier for
       matching strings of non-parentheses is important when applying the pat‐
       tern  to	 strings  that do not match. For example, when this pattern is
       applied to

	 (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()

       it yields "no match" quickly. However, if a  possessive	quantifier  is
       not  used, the match runs for a very long time indeed because there are
       so many different ways the + and * repeats can carve  up	 the  subject,
       and all have to be tested before failure can be reported.

       At  the	end  of a match, the values of capturing parentheses are those
       from the outermost level. If you want to obtain intermediate values,  a
       callout	function can be used (see below and the pcrecallout documenta‐
       tion). If the pattern above is matched against

	 (ab(cd)ef)

       the value for the inner capturing parentheses  (numbered	 2)  is	 "ef",
       which  is the last value taken on at the top level. If a capturing sub‐
       pattern is not matched at the top level, its final  captured  value  is
       unset,  even  if	 it was (temporarily) set at a deeper level during the
       matching process.

       If there are more than 15 capturing parentheses in a pattern, PCRE  has
       to  obtain extra memory to store data during a recursion, which it does
       by using pcre_malloc, freeing it via pcre_free afterwards. If no memory
       can be obtained, the match fails with the PCRE_ERROR_NOMEMORY error.

       Do  not	confuse	 the (?R) item with the condition (R), which tests for
       recursion.  Consider this pattern, which matches text in	 angle	brack‐
       ets,  allowing for arbitrary nesting. Only digits are allowed in nested
       brackets (that is, when recursing), whereas any characters are  permit‐
       ted at the outer level.

	 < (?: (?(R) \d++  | [^<>]*+) | (?R)) * >

       In  this	 pattern, (?(R) is the start of a conditional subpattern, with
       two different alternatives for the recursive and	 non-recursive	cases.
       The (?R) item is the actual recursive call.

   Differences in recursion processing between PCRE and Perl

       Recursion  processing  in PCRE differs from Perl in two important ways.
       In PCRE (like Python, but unlike Perl), a recursive subpattern call  is
       always treated as an atomic group. That is, once it has matched some of
       the subject string, it is never re-entered, even if it contains untried
       alternatives  and  there	 is a subsequent matching failure. This can be
       illustrated by the following pattern, which purports to match a	palin‐
       dromic  string  that contains an odd number of characters (for example,
       "a", "aba", "abcba", "abcdcba"):

	 ^(.|(.)(?1)\2)$

       The idea is that it either matches a single character, or two identical
       characters  surrounding	a sub-palindrome. In Perl, this pattern works;
       in PCRE it does not if the pattern is  longer  than  three  characters.
       Consider the subject string "abcba":

       At  the	top level, the first character is matched, but as it is not at
       the end of the string, the first alternative fails; the second alterna‐
       tive is taken and the recursion kicks in. The recursive call to subpat‐
       tern 1 successfully matches the next character ("b").  (Note  that  the
       beginning and end of line tests are not part of the recursion).

       Back  at	 the top level, the next character ("c") is compared with what
       subpattern 2 matched, which was "a". This fails. Because the  recursion
       is  treated  as	an atomic group, there are now no backtracking points,
       and so the entire match fails. (Perl is able, at	 this  point,  to  re-
       enter  the  recursion  and try the second alternative.) However, if the
       pattern is written with the alternatives in the other order, things are
       different:

	 ^((.)(?1)\2|.)$

       This  time,  the recursing alternative is tried first, and continues to
       recurse until it runs out of characters, at which point	the  recursion
       fails.  But  this  time	we  do	have another alternative to try at the
       higher level. That is the big difference:  in  the  previous  case  the
       remaining alternative is at a deeper recursion level, which PCRE cannot
       use.

       To change the pattern so that it matches all palindromic	 strings,  not
       just  those  with an odd number of characters, it is tempting to change
       the pattern to this:

	 ^((.)(?1)\2|.?)$

       Again, this works in Perl, but not in PCRE, and for  the	 same  reason.
       When  a	deeper	recursion has matched a single character, it cannot be
       entered again in order to match an empty string.	 The  solution	is  to
       separate	 the two cases, and write out the odd and even cases as alter‐
       natives at the higher level:

	 ^(?:((.)(?1)\2|)|((.)(?3)\4|.))

       If you want to match typical palindromic phrases, the  pattern  has  to
       ignore all non-word characters, which can be done like this:

	 ^\W*+(?:((.)\W*+(?1)\W*+\2|)|((.)\W*+(?3)\W*+\4|\W*+.\W*+))\W*+$

       If run with the PCRE_CASELESS option, this pattern matches phrases such
       as "A man, a plan, a canal: Panama!" and it works well in both PCRE and
       Perl.  Note the use of the possessive quantifier *+ to avoid backtrack‐
       ing into sequences of non-word characters. Without this, PCRE  takes  a
       great  deal  longer  (ten  times or more) to match typical phrases, and
       Perl takes so long that you think it has gone into a loop.

       WARNING: The palindrome-matching patterns above work only if  the  sub‐
       ject  string  does not start with a palindrome that is shorter than the
       entire string.  For example, although "abcba" is correctly matched,  if
       the  subject  is "ababa", PCRE finds the palindrome "aba" at the start,
       then fails at top level because the end of the string does not  follow.
       Once  again, it cannot jump back into the recursion to try other alter‐
       natives, so the entire match fails.

       The second way in which PCRE and Perl differ in	their  recursion  pro‐
       cessing	is in the handling of captured values. In Perl, when a subpat‐
       tern is called recursively or as a subpattern (see the  next  section),
       it  has	no  access to any values that were captured outside the recur‐
       sion, whereas in PCRE these values can  be  referenced.	Consider  this
       pattern:

	 ^(.)(\1|a(?2))

       In  PCRE,  this	pattern matches "bab". The first capturing parentheses
       match "b", then in the second group, when the back reference  \1	 fails
       to  match "b", the second alternative matches "a" and then recurses. In
       the recursion, \1 does now match "b" and so the whole  match  succeeds.
       In  Perl,  the pattern fails to match because inside the recursive call
       \1 cannot access the externally set value.

SUBPATTERNS AS SUBROUTINES

       If the syntax for a recursive subpattern call (either by number	or  by
       name)  is  used outside the parentheses to which it refers, it operates
       like a subroutine in a programming language. The called subpattern  may
       be  defined  before or after the reference. A numbered reference can be
       absolute or relative, as in these examples:

	 (...(absolute)...)...(?2)...
	 (...(relative)...)...(?-1)...
	 (...(?+1)...(relative)...

       An earlier example pointed out that the pattern

	 (sens|respons)e and \1ibility

       matches "sense and sensibility" and "response and responsibility",  but
       not "sense and responsibility". If instead the pattern

	 (sens|respons)e and (?1)ibility

       is  used, it does match "sense and responsibility" as well as the other
       two strings. Another example is	given  in  the	discussion  of	DEFINE
       above.

       All  subroutine	calls, whether recursive or not, are always treated as
       atomic groups. That is, once a subroutine has matched some of the  sub‐
       ject string, it is never re-entered, even if it contains untried alter‐
       natives and there is  a	subsequent  matching  failure.	Any  capturing
       parentheses  that  are  set  during the subroutine call revert to their
       previous values afterwards.

       Processing options such as case-independence are fixed when  a  subpat‐
       tern  is defined, so if it is used as a subroutine, such options cannot
       be changed for different calls. For example, consider this pattern:

	 (abc)(?i:(?-1))

       It matches "abcabc". It does not match "abcABC" because the  change  of
       processing option does not affect the called subpattern.

ONIGURUMA SUBROUTINE SYNTAX

       For  compatibility with Oniguruma, the non-Perl syntax \g followed by a
       name or a number enclosed either in angle brackets or single quotes, is
       an  alternative	syntax	for  referencing a subpattern as a subroutine,
       possibly recursively. Here are two of the examples used above,  rewrit‐
       ten using this syntax:

	 (?<pn> \( ( (?>[^()]+) | \g<pn> )* \) )
	 (sens|respons)e and \g'1'ibility

       PCRE  supports  an extension to Oniguruma: if a number is preceded by a
       plus or a minus sign it is taken as a relative reference. For example:

	 (abc)(?i:\g<-1>)

       Note that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are  not
       synonymous.  The former is a back reference; the latter is a subroutine
       call.

CALLOUTS

       Perl has a feature whereby using the sequence (?{...}) causes arbitrary
       Perl  code to be obeyed in the middle of matching a regular expression.
       This makes it possible, amongst other things, to extract different sub‐
       strings that match the same pair of parentheses when there is a repeti‐
       tion.

       PCRE provides a similar feature, but of course it cannot obey arbitrary
       Perl code. The feature is called "callout". The caller of PCRE provides
       an external function by putting its entry point in the global  variable
       pcre_callout  (8-bit  library) or pcre[16|32]_callout (16-bit or 32-bit
       library).  By default, this variable contains NULL, which disables  all
       calling out.

       Within  a  regular  expression,	(?C) indicates the points at which the
       external function is to be called. If you want  to  identify  different
       callout	points, you can put a number less than 256 after the letter C.
       The default value is zero.  For example, this pattern has  two  callout
       points:

	 (?C1)abc(?C2)def

       If  the PCRE_AUTO_CALLOUT flag is passed to a compiling function, call‐
       outs are automatically installed before each item in the pattern.  They
       are  all	 numbered  255. If there is a conditional group in the pattern
       whose condition is an assertion, an additional callout is inserted just
       before the condition. An explicit callout may also be set at this posi‐
       tion, as in this example:

	 (?(?C9)(?=a)abc|def)

       Note that this applies only to assertion conditions, not to other types
       of condition.

       During  matching, when PCRE reaches a callout point, the external func‐
       tion is called. It is provided with the	number	of  the	 callout,  the
       position	 in  the pattern, and, optionally, one item of data originally
       supplied by the caller of the matching function. The  callout  function
       may cause matching to proceed, to backtrack, or to fail altogether.

       By  default,  PCRE implements a number of optimizations at compile time
       and matching time, and one side-effect is that sometimes	 callouts  are
       skipped.	 If  you need all possible callouts to happen, you need to set
       options that disable the relevant optimizations. More  details,	and  a
       complete	 description  of  the  interface  to the callout function, are
       given in the pcrecallout documentation.

BACKTRACKING CONTROL

       Perl 5.10 introduced a number of "Special Backtracking Control  Verbs",
       which  are  still  described in the Perl documentation as "experimental
       and subject to change or removal in a future version of Perl". It  goes
       on  to  say:  "Their  usage in production code should be noted to avoid
       problems during upgrades." The same remarks apply to the PCRE  features
       described in this section.

       The  new verbs make use of what was previously invalid syntax: an open‐
       ing parenthesis followed by an asterisk. They are generally of the form
       (*VERB)	or  (*VERB:NAME). Some may take either form, possibly behaving
       differently depending on whether or not a name is present.  A  name  is
       any sequence of characters that does not include a closing parenthesis.
       The maximum length of name is 255 in the 8-bit library and 65535 in the
       16-bit  and  32-bit  libraries.	If  the name is empty, that is, if the
       closing parenthesis immediately follows the colon, the effect is as  if
       the  colon  were	 not  there.  Any number of these verbs may occur in a
       pattern.

       Since these verbs are specifically related  to  backtracking,  most  of
       them  can  be  used only when the pattern is to be matched using one of
       the traditional matching functions, because these  use  a  backtracking
       algorithm.  With the exception of (*FAIL), which behaves like a failing
       negative assertion, the backtracking control verbs cause	 an  error  if
       encountered by a DFA matching function.

       The  behaviour  of  these  verbs in repeated groups, assertions, and in
       subpatterns called as subroutines (whether or not recursively) is docu‐
       mented below.

   Optimizations that affect backtracking verbs

       PCRE  contains some optimizations that are used to speed up matching by
       running some checks at the start of each match attempt. For example, it
       may  know  the minimum length of matching subject, or that a particular
       character must be present. When one of these optimizations bypasses the
       running	of  a  match,  any  included  backtracking  verbs will not, of
       course, be processed. You can suppress the start-of-match optimizations
       by  setting  the	 PCRE_NO_START_OPTIMIZE	 option when calling pcre_com‐
       pile() or pcre_exec(), or by starting the pattern with (*NO_START_OPT).
       There is more discussion of this option in the section entitled "Option
       bits for pcre_exec()" in the pcreapi documentation.

       Experiments with Perl suggest that it too  has  similar	optimizations,
       sometimes leading to anomalous results.

   Verbs that act immediately

       The  following  verbs act as soon as they are encountered. They may not
       be followed by a name.

	  (*ACCEPT)

       This verb causes the match to end successfully, skipping the  remainder
       of  the pattern. However, when it is inside a subpattern that is called
       as a subroutine, only that subpattern is ended  successfully.  Matching
       then continues at the outer level. If (*ACCEPT) in triggered in a posi‐
       tive assertion, the assertion succeeds; in a  negative  assertion,  the
       assertion fails.

       If  (*ACCEPT)  is inside capturing parentheses, the data so far is cap‐
       tured. For example:

	 A((?:A|B(*ACCEPT)|C)D)

       This matches "AB", "AAD", or "ACD"; when it matches "AB", "B"  is  cap‐
       tured by the outer parentheses.

	 (*FAIL) or (*F)

       This  verb causes a matching failure, forcing backtracking to occur. It
       is equivalent to (?!) but easier to read. The Perl documentation	 notes
       that  it	 is  probably  useful only when combined with (?{}) or (??{}).
       Those are, of course, Perl features that are not present in  PCRE.  The
       nearest	equivalent is the callout feature, as for example in this pat‐
       tern:

	 a+(?C)(*FAIL)

       A match with the string "aaaa" always fails, but the callout  is	 taken
       before each backtrack happens (in this example, 10 times).

   Recording which path was taken

       There  is  one  verb  whose  main  purpose  is to track how a match was
       arrived at, though it also has a	 secondary  use	 in  conjunction  with
       advancing the match starting point (see (*SKIP) below).

	 (*MARK:NAME) or (*:NAME)

       A  name	is  always  required  with  this  verb.	 There	may be as many
       instances of (*MARK) as you like in a pattern, and their names  do  not
       have to be unique.

       When  a	match succeeds, the name of the last-encountered (*MARK:NAME),
       (*PRUNE:NAME), or (*THEN:NAME) on the matching path is passed  back  to
       the  caller  as	described  in  the  section  entitled  "Extra data for
       pcre_exec()" in the  pcreapi  documentation.  Here  is  an  example  of
       pcretest	 output, where the /K modifier requests the retrieval and out‐
       putting of (*MARK) data:

	   re> /X(*MARK:A)Y|X(*MARK:B)Z/K
	 data> XY
	  0: XY
	 MK: A
	 XZ
	  0: XZ
	 MK: B

       The (*MARK) name is tagged with "MK:" in this output, and in this exam‐
       ple  it indicates which of the two alternatives matched. This is a more
       efficient way of obtaining this information than putting each  alterna‐
       tive in its own capturing parentheses.

       If  a  verb  with a name is encountered in a positive assertion that is
       true, the name is recorded and passed back if it	 is  the  last-encoun‐
       tered. This does not happen for negative assertions or failing positive
       assertions.

       After a partial match or a failed match, the last encountered  name  in
       the entire match process is returned. For example:

	   re> /X(*MARK:A)Y|X(*MARK:B)Z/K
	 data> XP
	 No match, mark = B

       Note  that  in  this  unanchored	 example the mark is retained from the
       match attempt that started at the letter "X" in the subject. Subsequent
       match attempts starting at "P" and then with an empty string do not get
       as far as the (*MARK) item, but nevertheless do not reset it.

       If you are interested in	 (*MARK)  values  after	 failed	 matches,  you
       should  probably	 set  the PCRE_NO_START_OPTIMIZE option (see above) to
       ensure that the match is always attempted.

   Verbs that act after backtracking

       The following verbs do nothing when they are encountered. Matching con‐
       tinues  with what follows, but if there is no subsequent match, causing
       a backtrack to the verb, a failure is  forced.  That  is,  backtracking
       cannot  pass  to the left of the verb. However, when one of these verbs
       appears inside an atomic group or an assertion that is true, its effect
       is  confined  to	 that  group, because once the group has been matched,
       there is never any backtracking into it. In this situation,  backtrack‐
       ing  can	 "jump	back" to the left of the entire atomic group or asser‐
       tion. (Remember also, as stated	above,	that  this  localization  also
       applies in subroutine calls.)

       These  verbs  differ  in exactly what kind of failure occurs when back‐
       tracking reaches them. The behaviour described below  is	 what  happens
       when  the  verb is not in a subroutine or an assertion. Subsequent sec‐
       tions cover these special cases.

	 (*COMMIT)

       This verb, which may not be followed by a name, causes the whole	 match
       to fail outright if there is a later matching failure that causes back‐
       tracking to reach it. Even if the pattern  is  unanchored,  no  further
       attempts to find a match by advancing the starting point take place. If
       (*COMMIT) is the only backtracking verb that is	encountered,  once  it
       has been passed pcre_exec() is committed to finding a match at the cur‐
       rent starting point, or not at all. For example:

	 a+(*COMMIT)b

       This matches "xxaab" but not "aacaab". It can be thought of as  a  kind
       of dynamic anchor, or "I've started, so I must finish." The name of the
       most recently passed (*MARK) in the path is passed back when  (*COMMIT)
       forces a match failure.

       If  there  is more than one backtracking verb in a pattern, a different
       one that follows (*COMMIT) may be triggered first,  so  merely  passing
       (*COMMIT) during a match does not always guarantee that a match must be
       at this starting point.

       Note that (*COMMIT) at the start of a pattern is not  the  same	as  an
       anchor,	unless	PCRE's start-of-match optimizations are turned off, as
       shown in this output from pcretest:

	   re> /(*COMMIT)abc/
	 data> xyzabc
	  0: abc
	 data> xyzabc\Y
	 No match

       For this pattern, PCRE knows that any match must start with "a", so the
       optimization skips along the subject to "a" before applying the pattern
       to the first set of data. The match attempt then succeeds. In the  sec‐
       ond  set of data, the escape sequence \Y is interpreted by the pcretest
       program. It causes the PCRE_NO_START_OPTIMIZE option  to	 be  set  when
       pcre_exec() is called.  This disables the optimization that skips along
       to the first character. The pattern is now applied starting at "x", and
       so  the	(*COMMIT)  causes  the	match to fail without trying any other
       starting points.

	 (*PRUNE) or (*PRUNE:NAME)

       This verb causes the match to fail at the current starting position  in
       the subject if there is a later matching failure that causes backtrack‐
       ing to reach it. If the pattern is unanchored, the  normal  "bumpalong"
       advance	to  the next starting character then happens. Backtracking can
       occur as usual to the left of (*PRUNE), before it is reached,  or  when
       matching	 to  the  right	 of  (*PRUNE), but if there is no match to the
       right, backtracking cannot cross (*PRUNE). In simple cases, the use  of
       (*PRUNE)	 is just an alternative to an atomic group or possessive quan‐
       tifier, but there are some uses of (*PRUNE) that cannot be expressed in
       any  other  way. In an anchored pattern (*PRUNE) has the same effect as
       (*COMMIT).

       The   behaviour	 of   (*PRUNE:NAME)   is   the	 not   the   same   as
       (*MARK:NAME)(*PRUNE).   It  is  like  (*MARK:NAME)  in that the name is
       remembered for  passing	back  to  the  caller.	However,  (*SKIP:NAME)
       searches only for names set with (*MARK).

	 (*SKIP)

       This  verb, when given without a name, is like (*PRUNE), except that if
       the pattern is unanchored, the "bumpalong" advance is not to  the  next
       character, but to the position in the subject where (*SKIP) was encoun‐
       tered. (*SKIP) signifies that whatever text was matched leading	up  to
       it cannot be part of a successful match. Consider:

	 a+(*SKIP)b

       If  the	subject	 is  "aaaac...",  after	 the first match attempt fails
       (starting at the first character in the	string),  the  starting	 point
       skips on to start the next attempt at "c". Note that a possessive quan‐
       tifer does not have the same effect as this example; although it	 would
       suppress	 backtracking  during  the  first  match  attempt,  the second
       attempt would start at the second character instead of skipping	on  to
       "c".

	 (*SKIP:NAME)

       When (*SKIP) has an associated name, its behaviour is modified. When it
       is triggered, the previous path through the pattern is searched for the
       most  recent  (*MARK)  that  has	 the  same  name. If one is found, the
       "bumpalong" advance is to the subject position that corresponds to that
       (*MARK) instead of to where (*SKIP) was encountered. If no (*MARK) with
       a matching name is found, the (*SKIP) is ignored.

       Note that (*SKIP:NAME) searches only for names set by (*MARK:NAME).  It
       ignores names that are set by (*PRUNE:NAME) or (*THEN:NAME).

	 (*THEN) or (*THEN:NAME)

       This  verb  causes  a skip to the next innermost alternative when back‐
       tracking reaches it. That  is,  it  cancels  any	 further  backtracking
       within  the  current  alternative.  Its name comes from the observation
       that it can be used for a pattern-based if-then-else block:

	 ( COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ ) ...

       If the COND1 pattern matches, FOO is tried (and possibly further	 items
       after  the  end	of the group if FOO succeeds); on failure, the matcher
       skips to the second alternative and tries COND2,	 without  backtracking
       into  COND1.  If that succeeds and BAR fails, COND3 is tried. If subse‐
       quently BAZ fails, there are no more alternatives, so there is a	 back‐
       track  to  whatever  came  before  the  entire group. If (*THEN) is not
       inside an alternation, it acts like (*PRUNE).

       The   behaviour	 of   (*THEN:NAME)   is	  the	not   the   same    as
       (*MARK:NAME)(*THEN).   It  is  like  (*MARK:NAME)  in  that the name is
       remembered for  passing	back  to  the  caller.	However,  (*SKIP:NAME)
       searches only for names set with (*MARK).

       A  subpattern that does not contain a | character is just a part of the
       enclosing alternative; it is not a nested  alternation  with  only  one
       alternative.  The effect of (*THEN) extends beyond such a subpattern to
       the enclosing alternative. Consider this pattern, where A, B, etc.  are
       complex	pattern fragments that do not contain any | characters at this
       level:

	 A (B(*THEN)C) | D

       If A and B are matched, but there is a failure in C, matching does  not
       backtrack into A; instead it moves to the next alternative, that is, D.
       However, if the subpattern containing (*THEN) is given an  alternative,
       it behaves differently:

	 A (B(*THEN)C | (*FAIL)) | D

       The  effect of (*THEN) is now confined to the inner subpattern. After a
       failure in C, matching moves to (*FAIL), which causes the whole subpat‐
       tern  to	 fail  because	there are no more alternatives to try. In this
       case, matching does now backtrack into A.

       Note that a conditional subpattern is  not  considered  as  having  two
       alternatives,  because  only  one  is  ever used. In other words, the |
       character in a conditional subpattern has a different meaning. Ignoring
       white space, consider:

	 ^.*? (?(?=a) a | b(*THEN)c )

       If  the	subject	 is  "ba", this pattern does not match. Because .*? is
       ungreedy, it initially matches zero  characters.	 The  condition	 (?=a)
       then  fails,  the  character  "b"  is  matched, but "c" is not. At this
       point, matching does not backtrack to .*? as might perhaps be  expected
       from  the  presence  of	the | character. The conditional subpattern is
       part of the single alternative that comprises the whole pattern, and so
       the  match  fails.  (If	there was a backtrack into .*?, allowing it to
       match "b", the match would succeed.)

       The verbs just described provide four different "strengths" of  control
       when subsequent matching fails. (*THEN) is the weakest, carrying on the
       match at the next alternative. (*PRUNE) comes next, failing  the	 match
       at  the	current starting position, but allowing an advance to the next
       character (for an unanchored pattern). (*SKIP) is similar, except  that
       the advance may be more than one character. (*COMMIT) is the strongest,
       causing the entire match to fail.

   More than one backtracking verb

       If more than one backtracking verb is present in	 a  pattern,  the  one
       that  is	 backtracked  onto first acts. For example, consider this pat‐
       tern, where A, B, etc. are complex pattern fragments:

	 (A(*COMMIT)B(*THEN)C|ABD)

       If A matches but B fails, the backtrack to (*COMMIT) causes the	entire
       match to fail. However, if A and B match, but C fails, the backtrack to
       (*THEN) causes the next alternative (ABD) to be tried.  This  behaviour
       is  consistent,	but is not always the same as Perl's. It means that if
       two or more backtracking verbs appear in succession, all the  the  last
       of them has no effect. Consider this example:

	 ...(*COMMIT)(*PRUNE)...

       If there is a matching failure to the right, backtracking onto (*PRUNE)
       causes it to be triggered, and its action is taken. There can never  be
       a backtrack onto (*COMMIT).

   Backtracking verbs in repeated groups

       PCRE  differs  from  Perl  in  its  handling  of	 backtracking verbs in
       repeated groups. For example, consider:

	 /(a(*COMMIT)b)+ac/

       If the subject is "abac", Perl matches,	but  PCRE  fails  because  the
       (*COMMIT) in the second repeat of the group acts.

   Backtracking verbs in assertions

       (*FAIL)	in  an assertion has its normal effect: it forces an immediate
       backtrack.

       (*ACCEPT) in a positive assertion causes the assertion to succeed with‐
       out  any	 further processing. In a negative assertion, (*ACCEPT) causes
       the assertion to fail without any further processing.

       The other backtracking verbs are not treated specially if  they	appear
       in  a  positive	assertion.  In	particular,  (*THEN) skips to the next
       alternative in the innermost enclosing  group  that  has	 alternations,
       whether or not this is within the assertion.

       Negative	 assertions  are,  however, different, in order to ensure that
       changing a positive assertion into a  negative  assertion  changes  its
       result. Backtracking into (*COMMIT), (*SKIP), or (*PRUNE) causes a neg‐
       ative assertion to be true, without considering any further alternative
       branches in the assertion.  Backtracking into (*THEN) causes it to skip
       to the next enclosing alternative within the assertion (the normal  be‐
       haviour),  but  if  the	assertion  does	 not have such an alternative,
       (*THEN) behaves like (*PRUNE).

   Backtracking verbs in subroutines

       These behaviours occur whether or not the subpattern is	called	recur‐
       sively.	Perl's treatment of subroutines is different in some cases.

       (*FAIL)	in  a subpattern called as a subroutine has its normal effect:
       it forces an immediate backtrack.

       (*ACCEPT) in a subpattern called as a subroutine causes the  subroutine
       match  to succeed without any further processing. Matching then contin‐
       ues after the subroutine call.

       (*COMMIT), (*SKIP), and (*PRUNE) in a subpattern called as a subroutine
       cause the subroutine match to fail.

       (*THEN)	skips to the next alternative in the innermost enclosing group
       within the subpattern that has alternatives. If there is no such	 group
       within the subpattern, (*THEN) causes the subroutine match to fail.

SEE ALSO

       pcreapi(3),  pcrecallout(3),  pcrematching(3),  pcresyntax(3), pcre(3),
       pcre16(3), pcre32(3).

AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.

REVISION

       Last updated: 14 June 2015
       Copyright (c) 1997-2015 University of Cambridge.

PCRE 8.38			 14 June 2015			PCREPATTERN(3)
[top]

List of man pages available for Kali

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net