lockstat man page on SmartOS

Man page or keyword search:  
man Server   16655 pages
apropos Keyword Search (all sections)
Output format
SmartOS logo
[printable version]

LOCKSTAT(1M)							  LOCKSTAT(1M)

NAME
       lockstat - report kernel lock and profiling statistics

SYNOPSIS
       lockstat [-ACEHI] [-e event_list] [-i rate]
	    [-b | -t | -h | -s depth] [-n nrecords]
	    [-l lock [, size]] [-d duration]
	    [-f function [, size]] [-T] [-ckgwWRpP] [-D count]
	    [-o filename] [-x opt [=val]] command [args]

DESCRIPTION
       The  lockstat utility gathers and displays kernel locking and profiling
       statistics. lockstat allows you to specify which events to  watch  (for
       example,	 spin on adaptive mutex, block on read access to rwlock due to
       waiting writers, and so forth) how much data to gather for each	event,
       and  how	 to  display  the data. By default, lockstat monitors all lock
       contention events,  gathers  frequency  and  timing  data  about	 those
       events,	and  displays  the data in decreasing frequency order, so that
       the most common events appear first.

       lockstat gathers data until the specified command completes. For	 exam‐
       ple,  to	 gather	 statistics for a fixed-time interval, use sleep(1) as
       the command, as follows:

       example# lockstat sleep 5

       When the -I option is specified, lockstat establishes  a	 per-processor
       high-level  periodic  interrupt	source	to gather profiling data.  The
       interrupt handler simply generates a lockstat event whose caller is the
       interrupted  PC (program counter). The profiling event is just like any
       other lockstat event, so all of the normal lockstat options are	appli‐
       cable.

       lockstat relies on DTrace to modify the running kernel's text to inter‐
       cept events of interest. This imposes a small but  measurable  overhead
       on  all	system activity, so access to lockstat is restricted to super-
       user by default. The system administrator can permit other users to use
       lockstat	 by  granting  them additional DTrace privileges. Refer to the
       Solaris Dynamic Tracing Guide for more information about	 DTrace	 secu‐
       rity features.

OPTIONS
       The following options are supported:

   Event Selection
       If no event selection options are specified, the default is -C.

       -A

	   Watch all lock events. -A is equivalent to -CH.

       -C

	   Watch contention events.

       -E

	   Watch error events.

       -e event_list

	   Only	 watch	the  specified events. event list is a comma-separated
	   list of events or ranges of events such as 1,4-7,35.	 Run  lockstat
	   with no arguments to get a brief description of all events.

       -H

	   Watch hold events.

       -I

	   Watch profiling interrupt events.

       -i rate

	   Interrupt  rate  (per second) for -I. The default is 97 Hz, so that
	   profiling doesn't run in lockstep with the clock  interrupt	(which
	   runs at 100 Hz).

   Data Gathering
       -x arg[=val]

	   Enable  or modify a DTrace runtime option or D compiler option. The
	   list of options is found in the . Boolean options  are  enabled  by
	   specifying  their  name.  Options with values are set by separating
	   the option name and value with an equals sign (=).

   Data Gathering (Mutually Exclusive)
       -b

	   Basic statistics: lock, caller, number of events.

       -h

	   Histogram: Timing plus time-distribution histograms.

       -s depth

	   Stack trace: Histogram plus stack traces up to depth frames deep.

       -t

	   Timing: Basic plus timing for all events [default].

   Data Filtering
       -d duration

	   Only watch events longer than duration.

       -f func[,size]

	   Only watch events generated by func, which can be  specified	 as  a
	   symbolic  name or hex address. size defaults to the ELF symbol size
	   if available, or 1 if not.

       -l lock[,size]

	   Only watch lock, which can be specified as a symbolic name  or  hex
	   address.  size  defaults  to the ELF symbol size or 1 if the symbol
	   size is not available.

       -n nrecords

	   Maximum number of data records.

       -T

	   Trace (rather than sample) events [off by default].

   Data Reporting
       -c

	   Coalesce lock data for lock arrays (for example, pse_mutex[]).

       -D count

	   Only display the top count events of each type.

       -g

	   Show total events generated by  function.  For  example,  if	 foo()
	   calls bar() in a loop, the work done by bar() counts as work gener‐
	   ated by foo() (along with any work done by foo()  itself).  The  -g
	   option  works by counting the total number of stack frames in which
	   each function appears.  This	 implies  two  things:	(1)  the  data
	   reported  by	 -g can be misleading if the stack traces are not deep
	   enough, and (2) functions that are called  recursively  might  show
	   greater than 100% activity. In light of issue (1), the default data
	   gathering mode when using -g is -s 50.

       -k

	   Coalesce PCs within functions.

       -o filename

	   Direct output to filename.

       -P

	   Sort data by (count * time) product.

       -p

	   Parsable output format.

       -R

	   Display rates (events per second) rather than counts.

       -W

	   Whichever: distinguish events only by caller, not by lock.

       -w

	   Wherever: distinguish events only by lock, not by caller.

DISPLAY FORMATS
       The following headers appear over various columns of data.

       Count or ops/s

	   Number of times this event occurred, or the rate (times per second)
	   if -R was specified.

       indv

	   Percentage of all events represented by this individual event.

       genr

	   Percentage of all events generated by this function.

       cuml

	   Cumulative percentage; a running total of the individuals.

       rcnt

	   Average  reference count. This will always be 1 for exclusive locks
	   (mutexes, spin locks, rwlocks held as writer) but  can  be  greater
	   than 1 for shared locks (rwlocks held as reader).

       nsec

	   Average  duration  of the events in nanoseconds, as appropriate for
	   the event.  For  the	 profiling  event,  duration  means  interrupt
	   latency.

       Lock

	   Address of the lock; displayed symbolically if possible.

       CPU+PIL

	   CPU	plus processor interrupt level (PIL). For example, if CPU 4 is
	   interrupted while at PIL 6, this will be reported as cpu[4]+6.

       Caller

	   Address of the caller; displayed symbolically if possible.

EXAMPLES
       Example 1 Measuring Kernel Lock Contention

	 example# lockstat sleep 5
	 Adaptive mutex spin: 2210 events in 5.055 seconds (437 events/sec)

	 Count indv cuml rcnt	  nsec Lock		   Caller
	 ------------------------------------------------------------------------
	   269	12%  12% 1.00	  2160 service_queue	   background+0xdc
	   249	11%  23% 1.00	    86 service_queue	   qenable_locked+0x64
	   228	10%  34% 1.00	   131 service_queue	   background+0x15c
	    68	 3%  37% 1.00	    79 0x30000024070	   untimeout+0x1c
	    59	 3%  40% 1.00	   384 0x300066fa8e0	   background+0xb0
	    43	 2%  41% 1.00	    30 rqcred_lock	   svc_getreq+0x3c
	    42	 2%  43% 1.00	   341 0x30006834eb8	   background+0xb0
	    41	 2%  45% 1.00	   135 0x30000021058	   untimeout+0x1c
	    40	 2%  47% 1.00	    39 rqcred_lock	   svc_getreq+0x260
	    37	 2%  49% 1.00	  2372 0x300068e83d0	   hmestart+0x1c4
	    36	 2%  50% 1.00	    77 0x30000021058	   timeout_common+0x4
	    36	 2%  52% 1.00	   354 0x300066fa120	   background+0xb0
	    32	 1%  53% 1.00	    97 0x30000024070	   timeout_common+0x4
	    31	 1%  55% 1.00	  2923 0x300069883d0	   hmestart+0x1c4
	    29	 1%  56% 1.00	   366 0x300066fb290	   background+0xb0
	    28	 1%  57% 1.00	   117 0x3000001e040	   untimeout+0x1c
	    25	 1%  59% 1.00	    93 0x3000001e040	   timeout_common+0x4
	    22	 1%  60% 1.00	    25 0x30005161110	   sync_stream_buf+0xdc
	    21	 1%  60% 1.00	   291 0x30006834eb8	   putq+0xa4
	    19	 1%  61% 1.00	    43 0x3000515dcb0	   mdf_alloc+0xc
	    18	 1%  62% 1.00	   456 0x30006834eb8	   qenable+0x8
	    18	 1%  63% 1.00	    61 service_queue	   queuerun+0x168
	    17	 1%  64% 1.00	   268 0x30005418ee8	   vmem_free+0x3c
	 [...]

	 R/W reader blocked by writer: 76 events in 5.055 seconds (15 events/sec)

	 Count indv cuml rcnt	  nsec Lock		   Caller
	 ------------------------------------------------------------------------
	    23	30%  30% 1.00 22590137 0x300098ba358	   ufs_dirlook+0xd0
	    17	22%  53% 1.00  5820995 0x3000ad815e8	   find_bp+0x10
	    13	17%  70% 1.00  2639918 0x300098ba360	   ufs_iget+0x198
	     4	 5%  75% 1.00  3193015 0x300098ba360	   ufs_getattr+0x54
	     3	 4%  79% 1.00  7953418 0x3000ad817c0	   find_bp+0x10
	     3	 4%  83% 1.00	935211 0x3000ad815e8	   find_read_lof+0x14
	     2	 3%  86% 1.00 16357310 0x300073a4720	   find_bp+0x10
	     2	 3%  88% 1.00  2072433 0x300073a4720	   find_read_lof+0x14
	     2	 3%  91% 1.00  1606153 0x300073a4370	   find_bp+0x10
	     1	 1%  92% 1.00  2656909 0x300107e7400	   ufs_iget+0x198
	 [...]

       Example 2 Measuring Hold Times

	 example# lockstat -H -D 10 sleep 1
	 Adaptive mutex spin: 513 events

	 Count indv cuml rcnt	  nsec Lock		   Caller
	 -------------------------------------------------------------------------
	   480	 5%   5% 1.00	  1136 0x300007718e8	   putnext+0x40
	   286	 3%   9% 1.00	   666 0x3000077b430	   getf+0xd8
	   271	 3%  12% 1.00	   537 0x3000077b430	   msgio32+0x2fc
	   270	 3%  15% 1.00	  3670 0x300007718e8	   strgetmsg+0x3d4
	   270	 3%  18% 1.00	  1016 0x300007c38b0	   getq_noenab+0x200
	   264	 3%  20% 1.00	  1649 0x300007718e8	   strgetmsg+0xa70
	   216	 2%  23% 1.00	  6251 tcp_mi_lock	   tcp_snmp_get+0xfc
	   206	 2%  25% 1.00	   602 thread_free_lock	   clock+0x250
	   138	 2%  27% 1.00	   485 0x300007c3998	   putnext+0xb8
	   138	 2%  28% 1.00	  3706 0x300007718e8	   strrput+0x5b8
	 -------------------------------------------------------------------------
	 [...]

       Example 3 Measuring Hold Times for Stack Traces Containing  a  Specific
       Function

	 example# lockstat -H -f tcp_rput_data -s 50 -D 10 sleep 1
	 Adaptive mutex spin: 11 events in 1.023 seconds (11
	 events/sec)

	 -------------------------------------------------------------------------
	 Count indv cuml rcnt	  nsec Lock		      Caller
	     9	82%  82% 1.00	  2540 0x30000031380	      tcp_rput_data+0x2b90

	       nsec ------ Time Distribution ------ count     Stack
		256 |@@@@@@@@@@@@@@@@		    5	      tcp_rput_data+0x2b90
		512 |@@@@@@			    2	      putnext+0x78
	       1024 |@@@			    1	      ip_rput+0xec4
	       2048 |				    0	      _c_putnext+0x148
	       4096 |				    0	      hmeread+0x31c
	       8192 |				    0	      hmeintr+0x36c
	      16384 |@@@			    1
	 sbus_intr_wrapper+0x30
	 [...]

	 Count indv cuml rcnt	  nsec Lock		      Caller
	     1	 9%  91% 1.00	  1036 0x30000055380	      freemsg+0x44

	       nsec ------ Time Distribution ------ count     Stack
	       1024 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1	      freemsg+0x44
							      tcp_rput_data+0x2fd0
							      putnext+0x78
							      ip_rput+0xec4
							      _c_putnext+0x148
							      hmeread+0x31c
							      hmeintr+0x36c

	 sbus_intr_wrapper+0x30
	 -------------------------------------------------------------------------
	 [...]

       Example 4 Basic Kernel Profiling

       For basic profiling, we don't care whether the profiling interrupt sam‐
       pled foo()+0x4c or foo()+0x78; we care only that it  sampled  somewhere
       in  foo(),  so we use -k. The CPU and PIL aren't relevant to basic pro‐
       filing because we are measuring the system as a whole, not a particular
       CPU or interrupt level, so we use -W.

	 example# lockstat -kIW -D 20 ./polltest
	 Profiling interrupt: 82 events in 0.424 seconds (194
	 events/sec)

	 Count indv cuml rcnt	  nsec Hottest CPU+PIL	   Caller
	 -----------------------------------------------------------------------
	     8	10%  10% 1.00	   698 cpu[1]		   utl0
	     6	 7%  17% 1.00	   299 cpu[0]		   read
	     5	 6%  23% 1.00	   124 cpu[1]		   getf
	     4	 5%  28% 1.00	   327 cpu[0]		   fifo_read
	     4	 5%  33% 1.00	   112 cpu[1]		   poll
	     4	 5%  38% 1.00	   212 cpu[1]		   uiomove
	     4	 5%  43% 1.00	   361 cpu[1]		   mutex_tryenter
	     3	 4%  46% 1.00	   682 cpu[0]		   write
	     3	 4%  50% 1.00	    89 cpu[0]		   pcache_poll
	     3	 4%  54% 1.00	   118 cpu[1]		   set_active_fd
	     3	 4%  57% 1.00	   105 cpu[0]		   syscall_trap32
	     3	 4%  61% 1.00	   640 cpu[1]		   (usermode)
	     2	 2%  63% 1.00	   127 cpu[1]		   fifo_poll
	     2	 2%  66% 1.00	   300 cpu[1]		   fifo_write
	     2	 2%  68% 1.00	   669 cpu[0]		   releasef
	     2	 2%  71% 1.00	   112 cpu[1]		   bt_getlowbit
	     2	 2%  73% 1.00	   247 cpu[1]		   splx
	     2	 2%  76% 1.00	   503 cpu[0]		   mutex_enter
	     2	 2%  78% 1.00	   467 cpu[0]+10	   disp_lock_enter
	     2	 2%  80% 1.00	   139 cpu[1]		   default_copyin
	 -----------------------------------------------------------------------
	 [...]

       Example 5 Generated-load Profiling

       In  the	example above, 5% of the samples were in poll(). This tells us
       how much time was spent inside poll()  itself,  but  tells  us  nothing
       about  how much work was generated by poll(); that is, how much time we
       spent in functions called by poll(). To determine that, we use  the  -g
       option.	The  example below shows that although polltest spends only 5%
       of its time in poll() itself, poll()-induced work accounts for  34%  of
       the load.

       Note  that  the	functions that generate the profiling interrupt (lock‐
       stat_intr(), cyclic_fire(), and so forth) appear in every stack	trace,
       and  therefore are considered to have generated 100% of the load.  This
       illustrates an important point: the generated load percentages  do  not
       add  up	to  100% because they are not independent. If 72% of all stack
       traces contain both foo() and bar(), then both foo() and bar() are  72%
       load generators.

	 example# lockstat -kgIW -D 20 ./polltest
	 Profiling interrupt: 80 events in 0.412 seconds (194 events/sec)

	 Count genr cuml rcnt	  nsec Hottest CPU+PIL	   Caller
	 -------------------------------------------------------------------------
	    80 100% ---- 1.00	   310 cpu[1]		   lockstat_intr
	    80 100% ---- 1.00	   310 cpu[1]		   cyclic_fire
	    80 100% ---- 1.00	   310 cpu[1]		   cbe_level14
	    80 100% ---- 1.00	   310 cpu[1]		   current_thread
	    27	34% ---- 1.00	   176 cpu[1]		   poll
	    20	25% ---- 1.00	   221 cpu[0]		   write
	    19	24% ---- 1.00	   249 cpu[1]		   read
	    17	21% ---- 1.00	   232 cpu[0]		   write32
	    17	21% ---- 1.00	   207 cpu[1]		   pcache_poll
	    14	18% ---- 1.00	   319 cpu[0]		   fifo_write
	    13	16% ---- 1.00	   214 cpu[1]		   read32
	    10	12% ---- 1.00	   208 cpu[1]		   fifo_read
	    10	12% ---- 1.00	   787 cpu[1]		   utl0
	     9	11% ---- 1.00	   178 cpu[0]		   pcacheset_resolve
	     9	11% ---- 1.00	   262 cpu[0]		   uiomove
	     7	 9% ---- 1.00	   506 cpu[1]		   (usermode)
	     5	 6% ---- 1.00	   195 cpu[1]		   fifo_poll
	     5	 6% ---- 1.00	   136 cpu[1]		   syscall_trap32
	     4	 5% ---- 1.00	   139 cpu[0]		   releasef
	     3	 4% ---- 1.00	   277 cpu[1]		   polllock
	 -------------------------------------------------------------------------
	 [...]

       Example	6  Gathering Lock Contention and Profiling Data for a Specific
       Module

       In this example we use the -f option not to specify a single  function,
       but  rather  to	specify	 the  entire text space of the sbus module. We
       gather both lock contention and profiling statistics so that contention
       can be correlated with overall load on the module.

	 example# modinfo | grep sbus
	  24 102a8b6f	b8b4  59   1  sbus (SBus (sysio) nexus driver)

	 example# lockstat -kICE -f 0x102a8b6f,0xb8b4 sleep 10
	 Adaptive mutex spin: 39 events in 10.042 seconds (4 events/sec)

	 Count indv cuml rcnt	  nsec Lock		  Caller
	 -------------------------------------------------------------------------
	    15	38%  38% 1.00	   206 0x30005160528	  sync_stream_buf
	     7	18%  56% 1.00	    14 0x30005160d18	  sync_stream_buf
	     6	15%  72% 1.00	    27 0x300060c3118	  sync_stream_buf
	     5	13%  85% 1.00	    24 0x300060c3510	  sync_stream_buf
	     2	 5%  90% 1.00	    29 0x300060c2d20	  sync_stream_buf
	     2	 5%  95% 1.00	    24 0x30005161cf8	  sync_stream_buf
	     1	 3%  97% 1.00	    21 0x30005161110	  sync_stream_buf
	     1	 3% 100% 1.00	    23 0x30005160130	  sync_stream_buf
	 [...]

	 Adaptive mutex block: 9 events in 10.042 seconds (1 events/sec)

	 Count indv cuml rcnt	  nsec Lock		  Caller
	 -------------------------------------------------------------------------
	     4	44%  44% 1.00	156539 0x30005160528	  sync_stream_buf
	     2	22%  67% 1.00	763516 0x30005160d18	  sync_stream_buf
	     1	11%  78% 1.00	462130 0x300060c3510	  sync_stream_buf
	     1	11%  89% 1.00	288749 0x30005161110	  sync_stream_buf
	     1	11% 100% 1.00  1015374 0x30005160130	  sync_stream_buf
	 [...]

	 Profiling interrupt: 229 events in 10.042 seconds (23 events/sec)

	 Count indv cuml rcnt	  nsec Hottest CPU+PIL	  Caller

	 -------------------------------------------------------------------------
	    89	39%  39% 1.00	   426 cpu[0]+6		  sync_stream_buf
	    64	28%  67% 1.00	   398 cpu[0]+6		  sbus_intr_wrapper
	    23	10%  77% 1.00	   324 cpu[0]+6		  iommu_dvma_kaddr_load
	    21	 9%  86% 1.00	   512 cpu[0]+6		  iommu_tlb_flush
	    14	 6%  92% 1.00	   342 cpu[0]+6		  iommu_dvma_unload
	    13	 6%  98% 1.00	   306 cpu[1]		  iommu_dvma_sync
	     5	 2% 100% 1.00	   389 cpu[1]		  iommu_dma_bindhdl
	 -------------------------------------------------------------------------
	 [...]

       Example 7 Determining the Average PIL (processor interrupt level) for a
       CPU

	 example# lockstat -Iw -l cpu[3] ./testprog

	 Profiling interrupt: 14791 events in 152.463 seconds (97 events/sec)

	 Count indv cuml rcnt	  nsec CPU+PIL		   Hottest Caller

	 -----------------------------------------------------------------------
	 13641	92%  92% 1.00	   253 cpu[3]		   (usermode)
	   579	 4%  96% 1.00	   325 cpu[3]+6		   ip_ocsum+0xe8
	   375	 3%  99% 1.00	   411 cpu[3]+10	   splx
	   154	 1% 100% 1.00	   527 cpu[3]+4		   fas_intr_svc+0x80
	    41	 0% 100% 1.00	   293 cpu[3]+13	   send_mondo+0x18
	     1	 0% 100% 1.00	   266 cpu[3]+12	   zsa_rxint+0x400
	 -----------------------------------------------------------------------
	 [...]

       Example 8 Determining which Subsystem is Causing the System to be Busy

	 example# lockstat -s 10 -I sleep 20

	 Profiling interrupt: 4863 events in 47.375 seconds (103 events/sec)

	 Count indv cuml rcnt	  nsec CPU+PIL		Caller

	 -----------------------------------------------------------------------
	 1929	40%  40% 0.00	  3215 cpu[0]		usec_delay+0x78
	   nsec ------ Time Distribution ------ count	Stack
	   4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	1872	ata_wait+0x90
	   8192 |				27	acersb_get_intr_status+0x34
	  16384 |				29	ata_set_feature+0x124
	  32768 |				1	ata_disk_start+0x15c
							ata_hba_start+0xbc
							ghd_waitq_process_and \
							_mutex_hold+0x70
							ghd_waitq_process_and \
							_mutex_exit+0x4
							ghd_transport+0x12c
							ata_disk_tran_start+0x108
	 -----------------------------------------------------------------------
	 [...]

SEE ALSO
       dtrace(1M),  plockstat(1M),  attributes(5),  lockstat(7D),   mutex(9F),
       rwlock(9F)

       Solaris Dynamic Tracing Guide

NOTES
       The  profiling  support	provided  by lockstat -I replaces the old (and
       undocumented) /usr/bin/kgmon and /dev/profile.

       Tail-call elimination can affect call sites. For example, if foo()+0x50
       calls  bar()  and  the  last thing bar() does is call mutex_exit(), the
       compiler can arrange for bar() to branch to mutex_exit()with  a	return
       address	of  foo()+0x58. Thus, the mutex_exit() in bar() will appear as
       though it occurred at foo()+0x58.

       The PC in the stack frame in which an interrupt	occurs	can  be	 bogus
       because, between function calls, the compiler is free to use the return
       address register for local storage.

       When using the -I and -s options together, the interrupted PC will usu‐
       ally  not  appear  anywhere in the stack since the interrupt handler is
       entered asynchronously, not by a function call from that PC.

       The lockstat technology is provided on an as-is basis. The  format  and
       content of lockstat output reflect the current Solaris kernel implemen‐
       tation and are therefore subject to change in future releases.

				 Feb 28, 2008			  LOCKSTAT(1M)
[top]

List of man pages available for SmartOS

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net