kcmp man page on Kali

Man page or keyword search:  
man Server   9211 pages
apropos Keyword Search (all sections)
Output format
Kali logo
[printable version]

KCMP(2)			   Linux Programmer's Manual		       KCMP(2)

NAME
       kcmp  -	compare	 two  processes	 to  determine	if they share a kernel
       resource

SYNOPSIS
       #include <linux/kcmp.h>

       int kcmp(pid_t pid1, pid_t pid2, int type,
		unsigned long idx1, unsigned long idx2);

       Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION
       The kcmp() system call can be used to check whether the	two  processes
       identified  by  pid1  and  pid2 share a kernel resource such as virtual
       memory, file descriptors, and so on.

       Permission  to  employ  kcmp()  is  governed  by	 ptrace	 access	  mode
       PTRACE_MODE_READ_REALCREDS  checks  against  both  pid1	and  pid2; see
       ptrace(2).

       The type argument specifies which resource is to be compared in the two
       processes.  It has one of the following values:

       KCMP_FILE
	      Check  whether a file descriptor idx1 in the process pid1 refers
	      to the same open file description (see open(2)) as file descrip‐
	      tor  idx2	 in  the  process  pid2.   The	existence  of two file
	      descriptors that refer to the same  open	file  description  can
	      occur  as	 a  result of dup(2) (and similar) fork(2), or passing
	      file descriptors via a domain socket (see unix(7)).

       KCMP_FILES
	      Check whether the processes share the  same  set	of  open  file
	      descriptors.   The arguments idx1 and idx2 are ignored.  See the
	      discussion of the CLONE_FILES flag in clone(2).

       KCMP_FS
	      Check whether the processes share the same  filesystem  informa‐
	      tion  (i.e.,  file  mode	creation  mask, working directory, and
	      filesystem root).	 The arguments idx1 and idx2 are ignored.  See
	      the discussion of the CLONE_FS flag in clone(2).

       KCMP_IO
	      Check  whether  the  processes share I/O context.	 The arguments
	      idx1 and idx2 are ignored.  See the discussion of	 the  CLONE_IO
	      flag in clone(2).

       KCMP_SIGHAND
	      Check  whether the processes share the same table of signal dis‐
	      positions.  The arguments idx1 and idx2 are  ignored.   See  the
	      discussion of the CLONE_SIGHAND flag in clone(2).

       KCMP_SYSVSEM
	      Check whether the processes share the same list of System V sem‐
	      aphore  undo  operations.	  The  arguments  idx1	and  idx2  are
	      ignored.	 See  the  discussion  of  the	CLONE_SYSVSEM  flag in
	      clone(2).

       KCMP_VM
	      Check whether the processes share the same address  space.   The
	      arguments	 idx1 and idx2 are ignored.  See the discussion of the
	      CLONE_VM flag in clone(2).

       KCMP_EPOLL_TFD (since Linux 4.13)
	      Check whether the file descriptor idx1 of the  process  pid1  is
	      present  in  the	epoll(7)  instance  described  by  idx2 of the
	      process pid2.  The argument idx2 is a  pointer  to  a  structure
	      where  the  target  file	is  described.	This structure has the
	      form:

	   struct kcmp_epoll_slot {
	       __u32 efd;
	       __u32 tfd;
	       __u64 toff;
	   };

       Within this structure, efd is an epoll file  descriptor	returned  from
       epoll_create(2),	 tfd is a target file descriptor number, and toff is a
       target file offset counted from zero.  Several different targets may be
       registered  with the same file descriptor number and setting a specific
       offset helps to investigate each of them.

       Note the kcmp() is not protected	 against  false	 positives  which  may
       occur if the processes are currently running.  One should stop the pro‐
       cesses by sending SIGSTOP (see signal(7)) prior to inspection with this
       system call to obtain meaningful results.

RETURN VALUE
       The return value of a successful call to kcmp() is simply the result of
       arithmetic comparison of kernel	pointers  (when	 the  kernel  compares
       resources, it uses their memory addresses).

       The  easiest way to explain is to consider an example.  Suppose that v1
       and v2 are the addresses of  appropriate	 resources,  then  the	return
       value is one of the following:

	   0   v1  is equal to v2; in other words, the two processes share the
	       resource.

	   1   v1 is less than v2.

	   2   v1 is greater than v2.

	   3   v1 is not equal to v2, but ordering information is unavailable.

       On error, -1 is returned, and errno is set appropriately.

       kcmp() was designed to return values suitable  for  sorting.   This  is
       particularly  handy  if	one  needs  to	compare a large number of file
       descriptors.

ERRORS
       EBADF  type is KCMP_FILE and fd1 or fd2 is not an open file descriptor.

       EINVAL type is invalid.

       EPERM  Insufficient  permission	to  inspect  process  resources.   The
	      CAP_SYS_PTRACE  capability is required to inspect processes that
	      you do not own.  Other ptrace limitations may also  apply,  such
	      as     CONFIG_SECURITY_YAMA,    which,	when	/proc/sys/ker‐
	      nel/yama/ptrace_scope is 2, limits kcmp()	 to  child  processes;
	      see ptrace(2).

       ESRCH  Process pid1 or pid2 does not exist.

       EFAULT The  epoll  slot	addressed  by  idx2  is	 outside of the user's
	      address space.

       ENOENT The target file is not present in epoll(7) instance.

VERSIONS
       The kcmp() system call first appeared in Linux 3.5.

CONFORMING TO
       kcmp() is Linux-specific and should not be used in programs intended to
       be portable.

NOTES
       Glibc  does  not	 provide a wrapper for this system call; call it using
       syscall(2).

       This system call is available only if the kernel	 was  configured  with
       CONFIG_CHECKPOINT_RESTORE.   The main use of the system call is for the
       checkpoint/restore in user space (CRIU) feature.	  The  alternative  to
       this system call would have been to expose suitable process information
       via the proc(5) filesystem; this was deemed to be unsuitable for	 secu‐
       rity reasons.

       See  clone(2)  for  some background information on the shared resources
       referred to on this page.

EXAMPLE
       The program below uses kcmp() to test whether pairs of file descriptors
       refer  to  the same open file description.  The program tests different
       cases for the file descriptor pairs, as described in the	 program  out‐
       put.  An example run of the program is as follows:

	   $ ./a.out
	   Parent PID is 1144
	   Parent opened file on FD 3

	   PID of child of fork() is 1145
		Compare duplicate FDs from different processes:
		     kcmp(1145, 1144, KCMP_FILE, 3, 3) ==> same
	   Child opened file on FD 4
		Compare FDs from distinct open()s in same process:
		     kcmp(1145, 1145, KCMP_FILE, 3, 4) ==> different
	   Child duplicated FD 3 to create FD 5
		Compare duplicated FDs in same process:
		     kcmp(1145, 1145, KCMP_FILE, 3, 5) ==> same

   Program source

       #define _GNU_SOURCE
       #include <sys/syscall.h>
       #include <sys/wait.h>
       #include <sys/stat.h>
       #include <stdlib.h>
       #include <stdio.h>
       #include <unistd.h>
       #include <fcntl.h>
       #include <linux/kcmp.h>

       #define errExit(msg)    do { perror(msg); exit(EXIT_FAILURE); \
			       } while (0)

       static int
       kcmp(pid_t pid1, pid_t pid2, int type,
	    unsigned long idx1, unsigned long idx2)
       {
	   return syscall(SYS_kcmp, pid1, pid2, type, idx1, idx2);
       }

       static void
       test_kcmp(char *msg, id_t pid1, pid_t pid2, int fd_a, int fd_b)
       {
	   printf("\t%s\n", msg);
	   printf("\t\tkcmp(%ld, %ld, KCMP_FILE, %d, %d) ==> %s\n",
		   (long) pid1, (long) pid2, fd_a, fd_b,
		   (kcmp(pid1, pid2, KCMP_FILE, fd_a, fd_b) == 0) ?
			       "same" : "different");
       }

       int
       main(int argc, char *argv[])
       {
	   int fd1, fd2, fd3;
	   char pathname[] = "/tmp/kcmp.test";

	   fd1 = open(pathname, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);
	   if (fd1 == -1)
	       errExit("open");

	   printf("Parent PID is %ld\n", (long) getpid());
	   printf("Parent opened file on FD %d\n\n", fd1);

	   switch (fork()) {
	   case -1:
	       errExit("fork");

	   case 0:
	       printf("PID of child of fork() is %ld\n", (long) getpid());

	       test_kcmp("Compare duplicate FDs from different processes:",
		       getpid(), getppid(), fd1, fd1);

	       fd2 = open(pathname, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);
	       if (fd2 == -1)
		   errExit("open");
	       printf("Child opened file on FD %d\n", fd2);

	       test_kcmp("Compare FDs from distinct open()s in same process:",
		       getpid(), getpid(), fd1, fd2);

	       fd3 = dup(fd1);
	       if (fd3 == -1)
		   errExit("dup");
	       printf("Child duplicated FD %d to create FD %d\n", fd1, fd3);

	       test_kcmp("Compare duplicated FDs in same process:",
		       getpid(), getpid(), fd1, fd3);
	       break;

	   default:
	       wait(NULL);
	   }

	   exit(EXIT_SUCCESS);
       }

SEE ALSO
       clone(2), unshare(2)

COLOPHON
       This  page  is  part of release 4.14 of the Linux man-pages project.  A
       description of the project, information about reporting bugs,  and  the
       latest	  version     of     this    page,    can    be	   found    at
       https://www.kernel.org/doc/man-pages/.

Linux				  2017-09-15			       KCMP(2)
[top]

List of man pages available for Kali

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net