ffmpeg-protocols man page on Alpinelinux

Man page or keyword search:  
man Server   18016 pages
apropos Keyword Search (all sections)
Output format
Alpinelinux logo
[printable version]

FFMPEG-PROTOCOLS(1)					   FFMPEG-PROTOCOLS(1)

NAME
       ffmpeg-protocols - FFmpeg protocols

DESCRIPTION
       This document describes the input and output protocols provided by the
       libavformat library.

PROTOCOLS
       Protocols are configured elements in FFmpeg that enable access to
       resources that require specific protocols.

       When you configure your FFmpeg build, all the supported protocols are
       enabled by default. You can list all available ones using the configure
       option "--list-protocols".

       You can disable all the protocols using the configure option
       "--disable-protocols", and selectively enable a protocol using the
       option "--enable-protocol=PROTOCOL", or you can disable a particular
       protocol using the option "--disable-protocol=PROTOCOL".

       The option "-protocols" of the ff* tools will display the list of
       supported protocols.

       A description of the currently available protocols follows.

   bluray
       Read BluRay playlist.

       The accepted options are:

       angle
	   BluRay angle

       chapter
	   Start chapter (1...N)

       playlist
	   Playlist to read (BDMV/PLAYLIST/?????.mpls)

       Examples:

       Read longest playlist from BluRay mounted to /mnt/bluray:

	       bluray:/mnt/bluray

       Read angle 2 of playlist 4 from BluRay mounted to /mnt/bluray, start
       from chapter 2:

	       -playlist 4 -angle 2 -chapter 2 bluray:/mnt/bluray

   cache
       Caching wrapper for input stream.

       Cache the input stream to temporary file. It brings seeking capability
       to live streams.

	       cache:<URL>

   concat
       Physical concatenation protocol.

       Allow to read and seek from many resource in sequence as if they were a
       unique resource.

       A URL accepted by this protocol has the syntax:

	       concat:<URL1>|<URL2>|...|<URLN>

       where URL1, URL2, ..., URLN are the urls of the resource to be
       concatenated, each one possibly specifying a distinct protocol.

       For example to read a sequence of files split1.mpeg, split2.mpeg,
       split3.mpeg with ffplay use the command:

	       ffplay concat:split1.mpeg\|split2.mpeg\|split3.mpeg

       Note that you may need to escape the character "|" which is special for
       many shells.

   crypto
       AES-encrypted stream reading protocol.

       The accepted options are:

       key Set the AES decryption key binary block from given hexadecimal
	   representation.

       iv  Set the AES decryption initialization vector binary block from
	   given hexadecimal representation.

       Accepted URL formats:

	       crypto:<URL>
	       crypto+<URL>

   data
       Data in-line in the URI. See
       <http://en.wikipedia.org/wiki/Data_URI_scheme>.

       For example, to convert a GIF file given inline with ffmpeg:

	       ffmpeg -i "" smiley.png

   file
       File access protocol.

       Allow to read from or write to a file.

       A file URL can have the form:

	       file:<filename>

       where filename is the path of the file to read.

       An URL that does not have a protocol prefix will be assumed to be a
       file URL. Depending on the build, an URL that looks like a Windows path
       with the drive letter at the beginning will also be assumed to be a
       file URL (usually not the case in builds for unix-like systems).

       For example to read from a file input.mpeg with ffmpeg use the command:

	       ffmpeg -i file:input.mpeg output.mpeg

       This protocol accepts the following options:

       truncate
	   Truncate existing files on write, if set to 1. A value of 0
	   prevents truncating. Default value is 1.

       blocksize
	   Set I/O operation maximum block size, in bytes. Default value is
	   "INT_MAX", which results in not limiting the requested block size.
	   Setting this value reasonably low improves user termination request
	   reaction time, which is valuable for files on slow medium.

   ftp
       FTP (File Transfer Protocol).

       Allow to read from or write to remote resources using FTP protocol.

       Following syntax is required.

	       ftp://[user[:password]@]server[:port]/path/to/remote/resource.mpeg

       This protocol accepts the following options.

       timeout
	   Set timeout of socket I/O operations used by the underlying low
	   level operation. By default it is set to -1, which means that the
	   timeout is not specified.

       ftp-anonymous-password
	   Password used when login as anonymous user. Typically an e-mail
	   address should be used.

       ftp-write-seekable
	   Control seekability of connection during encoding. If set to 1 the
	   resource is supposed to be seekable, if set to 0 it is assumed not
	   to be seekable. Default value is 0.

       NOTE: Protocol can be used as output, but it is recommended to not do
       it, unless special care is taken (tests, customized server
       configuration etc.). Different FTP servers behave in different way
       during seek operation. ff* tools may produce incomplete content due to
       server limitations.

   gopher
       Gopher protocol.

   hls
       Read Apple HTTP Live Streaming compliant segmented stream as a uniform
       one. The M3U8 playlists describing the segments can be remote HTTP
       resources or local files, accessed using the standard file protocol.
       The nested protocol is declared by specifying "+proto" after the hls
       URI scheme name, where proto is either "file" or "http".

	       hls+http://host/path/to/remote/resource.m3u8
	       hls+file://path/to/local/resource.m3u8

       Using this protocol is discouraged - the hls demuxer should work just
       as well (if not, please report the issues) and is more complete.	 To
       use the hls demuxer instead, simply use the direct URLs to the m3u8
       files.

   http
       HTTP (Hyper Text Transfer Protocol).

       This protocol accepts the following options:

       seekable
	   Control seekability of connection. If set to 1 the resource is
	   supposed to be seekable, if set to 0 it is assumed not to be
	   seekable, if set to -1 it will try to autodetect if it is seekable.
	   Default value is -1.

       chunked_post
	   If set to 1 use chunked Transfer-Encoding for posts, default is 1.

       content_type
	   Set a specific content type for the POST messages.

       headers
	   Set custom HTTP headers, can override built in default headers. The
	   value must be a string encoding the headers.

       multiple_requests
	   Use persistent connections if set to 1, default is 0.

       post_data
	   Set custom HTTP post data.

       user-agent
       user_agent
	   Override the User-Agent header. If not specified the protocol will
	   use a string describing the libavformat build. ("Lavf/<version>")

       timeout
	   Set timeout of socket I/O operations used by the underlying low
	   level operation. By default it is set to -1, which means that the
	   timeout is not specified.

       mime_type
	   Export the MIME type.

       icy If set to 1 request ICY (SHOUTcast) metadata from the server. If
	   the server supports this, the metadata has to be retrieved by the
	   application by reading the icy_metadata_headers and
	   icy_metadata_packet options.	 The default is 0.

       icy_metadata_headers
	   If the server supports ICY metadata, this contains the ICY-specific
	   HTTP reply headers, separated by newline characters.

       icy_metadata_packet
	   If the server supports ICY metadata, and icy was set to 1, this
	   contains the last non-empty metadata packet sent by the server. It
	   should be polled in regular intervals by applications interested in
	   mid-stream metadata updates.

       cookies
	   Set the cookies to be sent in future requests. The format of each
	   cookie is the same as the value of a Set-Cookie HTTP response
	   field. Multiple cookies can be delimited by a newline character.

       offset
	   Set initial byte offset.

       end_offset
	   Try to limit the request to bytes preceding this offset.

       HTTP Cookies

       Some HTTP requests will be denied unless cookie values are passed in
       with the request. The cookies option allows these cookies to be
       specified. At the very least, each cookie must specify a value along
       with a path and domain.	HTTP requests that match both the domain and
       path will automatically include the cookie value in the HTTP Cookie
       header field. Multiple cookies can be delimited by a newline.

       The required syntax to play a stream specifying a cookie is:

	       ffplay -cookies "nlqptid=nltid=tsn; path=/; domain=somedomain.com;" http://somedomain.com/somestream.m3u8

   mmst
       MMS (Microsoft Media Server) protocol over TCP.

   mmsh
       MMS (Microsoft Media Server) protocol over HTTP.

       The required syntax is:

	       mmsh://<server>[:<port>][/<app>][/<playpath>]

   md5
       MD5 output protocol.

       Computes the MD5 hash of the data to be written, and on close writes
       this to the designated output or stdout if none is specified. It can be
       used to test muxers without writing an actual file.

       Some examples follow.

	       # Write the MD5 hash of the encoded AVI file to the file output.avi.md5.
	       ffmpeg -i input.flv -f avi -y md5:output.avi.md5

	       # Write the MD5 hash of the encoded AVI file to stdout.
	       ffmpeg -i input.flv -f avi -y md5:

       Note that some formats (typically MOV) require the output protocol to
       be seekable, so they will fail with the MD5 output protocol.

   pipe
       UNIX pipe access protocol.

       Allow to read and write from UNIX pipes.

       The accepted syntax is:

	       pipe:[<number>]

       number is the number corresponding to the file descriptor of the pipe
       (e.g. 0 for stdin, 1 for stdout, 2 for stderr).	If number is not
       specified, by default the stdout file descriptor will be used for
       writing, stdin for reading.

       For example to read from stdin with ffmpeg:

	       cat test.wav | ffmpeg -i pipe:0
	       # ...this is the same as...
	       cat test.wav | ffmpeg -i pipe:

       For writing to stdout with ffmpeg:

	       ffmpeg -i test.wav -f avi pipe:1 | cat > test.avi
	       # ...this is the same as...
	       ffmpeg -i test.wav -f avi pipe: | cat > test.avi

       This protocol accepts the following options:

       blocksize
	   Set I/O operation maximum block size, in bytes. Default value is
	   "INT_MAX", which results in not limiting the requested block size.
	   Setting this value reasonably low improves user termination request
	   reaction time, which is valuable if data transmission is slow.

       Note that some formats (typically MOV), require the output protocol to
       be seekable, so they will fail with the pipe output protocol.

   rtmp
       Real-Time Messaging Protocol.

       The Real-Time Messaging Protocol (RTMP) is used for streaming
       multimedia content across a TCP/IP network.

       The required syntax is:

	       rtmp://[<username>:<password>@]<server>[:<port>][/<app>][/<instance>][/<playpath>]

       The accepted parameters are:

       username
	   An optional username (mostly for publishing).

       password
	   An optional password (mostly for publishing).

       server
	   The address of the RTMP server.

       port
	   The number of the TCP port to use (by default is 1935).

       app It is the name of the application to access. It usually corresponds
	   to the path where the application is installed on the RTMP server
	   (e.g. /ondemand/, /flash/live/, etc.). You can override the value
	   parsed from the URI through the "rtmp_app" option, too.

       playpath
	   It is the path or name of the resource to play with reference to
	   the application specified in app, may be prefixed by "mp4:". You
	   can override the value parsed from the URI through the
	   "rtmp_playpath" option, too.

       listen
	   Act as a server, listening for an incoming connection.

       timeout
	   Maximum time to wait for the incoming connection. Implies listen.

       Additionally, the following parameters can be set via command line
       options (or in code via "AVOption"s):

       rtmp_app
	   Name of application to connect on the RTMP server. This option
	   overrides the parameter specified in the URI.

       rtmp_buffer
	   Set the client buffer time in milliseconds. The default is 3000.

       rtmp_conn
	   Extra arbitrary AMF connection parameters, parsed from a string,
	   e.g. like "B:1 S:authMe O:1 NN:code:1.23 NS:flag:ok O:0".  Each
	   value is prefixed by a single character denoting the type, B for
	   Boolean, N for number, S for string, O for object, or Z for null,
	   followed by a colon. For Booleans the data must be either 0 or 1
	   for FALSE or TRUE, respectively.  Likewise for Objects the data
	   must be 0 or 1 to end or begin an object, respectively. Data items
	   in subobjects may be named, by prefixing the type with 'N' and
	   specifying the name before the value (i.e. "NB:myFlag:1"). This
	   option may be used multiple times to construct arbitrary AMF
	   sequences.

       rtmp_flashver
	   Version of the Flash plugin used to run the SWF player. The default
	   is LNX 9,0,124,2. (When publishing, the default is FMLE/3.0
	   (compatible; <libavformat version>).)

       rtmp_flush_interval
	   Number of packets flushed in the same request (RTMPT only). The
	   default is 10.

       rtmp_live
	   Specify that the media is a live stream. No resuming or seeking in
	   live streams is possible. The default value is "any", which means
	   the subscriber first tries to play the live stream specified in the
	   playpath. If a live stream of that name is not found, it plays the
	   recorded stream. The other possible values are "live" and
	   "recorded".

       rtmp_pageurl
	   URL of the web page in which the media was embedded. By default no
	   value will be sent.

       rtmp_playpath
	   Stream identifier to play or to publish. This option overrides the
	   parameter specified in the URI.

       rtmp_subscribe
	   Name of live stream to subscribe to. By default no value will be
	   sent.  It is only sent if the option is specified or if rtmp_live
	   is set to live.

       rtmp_swfhash
	   SHA256 hash of the decompressed SWF file (32 bytes).

       rtmp_swfsize
	   Size of the decompressed SWF file, required for SWFVerification.

       rtmp_swfurl
	   URL of the SWF player for the media. By default no value will be
	   sent.

       rtmp_swfverify
	   URL to player swf file, compute hash/size automatically.

       rtmp_tcurl
	   URL of the target stream. Defaults to proto://host[:port]/app.

       For example to read with ffplay a multimedia resource named "sample"
       from the application "vod" from an RTMP server "myserver":

	       ffplay rtmp://myserver/vod/sample

       To publish to a password protected server, passing the playpath and app
       names separately:

	       ffmpeg -re -i <input> -f flv -rtmp_playpath some/long/path -rtmp_app long/app/name rtmp://username:password@myserver/

   rtmpe
       Encrypted Real-Time Messaging Protocol.

       The Encrypted Real-Time Messaging Protocol (RTMPE) is used for
       streaming multimedia content within standard cryptographic primitives,
       consisting of Diffie-Hellman key exchange and HMACSHA256, generating a
       pair of RC4 keys.

   rtmps
       Real-Time Messaging Protocol over a secure SSL connection.

       The Real-Time Messaging Protocol (RTMPS) is used for streaming
       multimedia content across an encrypted connection.

   rtmpt
       Real-Time Messaging Protocol tunneled through HTTP.

       The Real-Time Messaging Protocol tunneled through HTTP (RTMPT) is used
       for streaming multimedia content within HTTP requests to traverse
       firewalls.

   rtmpte
       Encrypted Real-Time Messaging Protocol tunneled through HTTP.

       The Encrypted Real-Time Messaging Protocol tunneled through HTTP
       (RTMPTE) is used for streaming multimedia content within HTTP requests
       to traverse firewalls.

   rtmpts
       Real-Time Messaging Protocol tunneled through HTTPS.

       The Real-Time Messaging Protocol tunneled through HTTPS (RTMPTS) is
       used for streaming multimedia content within HTTPS requests to traverse
       firewalls.

   libssh
       Secure File Transfer Protocol via libssh

       Allow to read from or write to remote resources using SFTP protocol.

       Following syntax is required.

	       sftp://[user[:password]@]server[:port]/path/to/remote/resource.mpeg

       This protocol accepts the following options.

       timeout
	   Set timeout of socket I/O operations used by the underlying low
	   level operation. By default it is set to -1, which means that the
	   timeout is not specified.

       truncate
	   Truncate existing files on write, if set to 1. A value of 0
	   prevents truncating. Default value is 1.

       private_key
	   Specify the path of the file containing private key to use during
	   authorization.  By default libssh searches for keys in the ~/.ssh/
	   directory.

       Example: Play a file stored on remote server.

	       ffplay sftp://user:password@server_address:22/home/user/resource.mpeg

   librtmp rtmp, rtmpe, rtmps, rtmpt, rtmpte
       Real-Time Messaging Protocol and its variants supported through
       librtmp.

       Requires the presence of the librtmp headers and library during
       configuration. You need to explicitly configure the build with
       "--enable-librtmp". If enabled this will replace the native RTMP
       protocol.

       This protocol provides most client functions and a few server functions
       needed to support RTMP, RTMP tunneled in HTTP (RTMPT), encrypted RTMP
       (RTMPE), RTMP over SSL/TLS (RTMPS) and tunneled variants of these
       encrypted types (RTMPTE, RTMPTS).

       The required syntax is:

	       <rtmp_proto>://<server>[:<port>][/<app>][/<playpath>] <options>

       where rtmp_proto is one of the strings "rtmp", "rtmpt", "rtmpe",
       "rtmps", "rtmpte", "rtmpts" corresponding to each RTMP variant, and
       server, port, app and playpath have the same meaning as specified for
       the RTMP native protocol.  options contains a list of space-separated
       options of the form key=val.

       See the librtmp manual page (man 3 librtmp) for more information.

       For example, to stream a file in real-time to an RTMP server using
       ffmpeg:

	       ffmpeg -re -i myfile -f flv rtmp://myserver/live/mystream

       To play the same stream using ffplay:

	       ffplay "rtmp://myserver/live/mystream live=1"

   rtp
       Real-time Transport Protocol.

       The required syntax for an RTP URL is:
       rtp://hostname[:port][?option=val...]

       port specifies the RTP port to use.

       The following URL options are supported:

       ttl=n
	   Set the TTL (Time-To-Live) value (for multicast only).

       rtcpport=n
	   Set the remote RTCP port to n.

       localrtpport=n
	   Set the local RTP port to n.

       localrtcpport=n'
	   Set the local RTCP port to n.

       pkt_size=n
	   Set max packet size (in bytes) to n.

       connect=0|1
	   Do a "connect()" on the UDP socket (if set to 1) or not (if set to
	   0).

       sources=ip[,ip]
	   List allowed source IP addresses.

       block=ip[,ip]
	   List disallowed (blocked) source IP addresses.

       write_to_source=0|1
	   Send packets to the source address of the latest received packet
	   (if set to 1) or to a default remote address (if set to 0).

       localport=n
	   Set the local RTP port to n.

	   This is a deprecated option. Instead, localrtpport should be used.

       Important notes:

       1.  If rtcpport is not set the RTCP port will be set to the RTP port
	   value plus 1.

       2.  If localrtpport (the local RTP port) is not set any available port
	   will be used for the local RTP and RTCP ports.

       3.  If localrtcpport (the local RTCP port) is not set it will be set to
	   the the local RTP port value plus 1.

   rtsp
       Real-Time Streaming Protocol.

       RTSP is not technically a protocol handler in libavformat, it is a
       demuxer and muxer. The demuxer supports both normal RTSP (with data
       transferred over RTP; this is used by e.g. Apple and Microsoft) and
       Real-RTSP (with data transferred over RDT).

       The muxer can be used to send a stream using RTSP ANNOUNCE to a server
       supporting it (currently Darwin Streaming Server and Mischa
       Spiegelmock's <http://github.com/revmischa/rtsp-server>).

       The required syntax for a RTSP url is:

	       rtsp://<hostname>[:<port>]/<path>

       Options can be set on the ffmpeg/ffplay command line, or set in code
       via "AVOption"s or in "avformat_open_input".

       The following options are supported.

       initial_pause
	   Do not start playing the stream immediately if set to 1. Default
	   value is 0.

       rtsp_transport
	   Set RTSP trasport protocols.

	   It accepts the following values:

	   udp Use UDP as lower transport protocol.

	   tcp Use TCP (interleaving within the RTSP control channel) as lower
	       transport protocol.

	   udp_multicast
	       Use UDP multicast as lower transport protocol.

	   http
	       Use HTTP tunneling as lower transport protocol, which is useful
	       for passing proxies.

	   Multiple lower transport protocols may be specified, in that case
	   they are tried one at a time (if the setup of one fails, the next
	   one is tried).  For the muxer, only the tcp and udp options are
	   supported.

       rtsp_flags
	   Set RTSP flags.

	   The following values are accepted:

	   filter_src
	       Accept packets only from negotiated peer address and port.

	   listen
	       Act as a server, listening for an incoming connection.

	   Default value is none.

       allowed_media_types
	   Set media types to accept from the server.

	   The following flags are accepted:

	   video
	   audio
	   data

	   By default it accepts all media types.

       min_port
	   Set minimum local UDP port. Default value is 5000.

       max_port
	   Set maximum local UDP port. Default value is 65000.

       timeout
	   Set maximum timeout (in seconds) to wait for incoming connections.

	   A value of -1 mean infinite (default). This option implies the
	   rtsp_flags set to listen.

       reorder_queue_size
	   Set number of packets to buffer for handling of reordered packets.

       stimeout
	   Set socket TCP I/O timeout in micro seconds.

       user-agent
	   Override User-Agent header. If not specified, it default to the
	   libavformat identifier string.

       When receiving data over UDP, the demuxer tries to reorder received
       packets (since they may arrive out of order, or packets may get lost
       totally). This can be disabled by setting the maximum demuxing delay to
       zero (via the "max_delay" field of AVFormatContext).

       When watching multi-bitrate Real-RTSP streams with ffplay, the streams
       to display can be chosen with "-vst" n and "-ast" n for video and audio
       respectively, and can be switched on the fly by pressing "v" and "a".

       Examples

       The following examples all make use of the ffplay and ffmpeg tools.

       ·   Watch a stream over UDP, with a max reordering delay of 0.5
	   seconds:

		   ffplay -max_delay 500000 -rtsp_transport udp rtsp://server/video.mp4

       ·   Watch a stream tunneled over HTTP:

		   ffplay -rtsp_transport http rtsp://server/video.mp4

       ·   Send a stream in realtime to a RTSP server, for others to watch:

		   ffmpeg -re -i <input> -f rtsp -muxdelay 0.1 rtsp://server/live.sdp

       ·   Receive a stream in realtime:

		   ffmpeg -rtsp_flags listen -i rtsp://ownaddress/live.sdp <output>

   sap
       Session Announcement Protocol (RFC 2974). This is not technically a
       protocol handler in libavformat, it is a muxer and demuxer.  It is used
       for signalling of RTP streams, by announcing the SDP for the streams
       regularly on a separate port.

       Muxer

       The syntax for a SAP url given to the muxer is:

	       sap://<destination>[:<port>][?<options>]

       The RTP packets are sent to destination on port port, or to port 5004
       if no port is specified.	 options is a "&"-separated list. The
       following options are supported:

       announce_addr=address
	   Specify the destination IP address for sending the announcements
	   to.	If omitted, the announcements are sent to the commonly used
	   SAP announcement multicast address 224.2.127.254 (sap.mcast.net),
	   or ff0e::2:7ffe if destination is an IPv6 address.

       announce_port=port
	   Specify the port to send the announcements on, defaults to 9875 if
	   not specified.

       ttl=ttl
	   Specify the time to live value for the announcements and RTP
	   packets, defaults to 255.

       same_port=0|1
	   If set to 1, send all RTP streams on the same port pair. If zero
	   (the default), all streams are sent on unique ports, with each
	   stream on a port 2 numbers higher than the previous.	 VLC/Live555
	   requires this to be set to 1, to be able to receive the stream.
	   The RTP stack in libavformat for receiving requires all streams to
	   be sent on unique ports.

       Example command lines follow.

       To broadcast a stream on the local subnet, for watching in VLC:

	       ffmpeg -re -i <input> -f sap sap://224.0.0.255?same_port=1

       Similarly, for watching in ffplay:

	       ffmpeg -re -i <input> -f sap sap://224.0.0.255

       And for watching in ffplay, over IPv6:

	       ffmpeg -re -i <input> -f sap sap://[ff0e::1:2:3:4]

       Demuxer

       The syntax for a SAP url given to the demuxer is:

	       sap://[<address>][:<port>]

       address is the multicast address to listen for announcements on, if
       omitted, the default 224.2.127.254 (sap.mcast.net) is used. port is the
       port that is listened on, 9875 if omitted.

       The demuxers listens for announcements on the given address and port.
       Once an announcement is received, it tries to receive that particular
       stream.

       Example command lines follow.

       To play back the first stream announced on the normal SAP multicast
       address:

	       ffplay sap://

       To play back the first stream announced on one the default IPv6 SAP
       multicast address:

	       ffplay sap://[ff0e::2:7ffe]

   sctp
       Stream Control Transmission Protocol.

       The accepted URL syntax is:

	       sctp://<host>:<port>[?<options>]

       The protocol accepts the following options:

       listen
	   If set to any value, listen for an incoming connection. Outgoing
	   connection is done by default.

       max_streams
	   Set the maximum number of streams. By default no limit is set.

   srtp
       Secure Real-time Transport Protocol.

       The accepted options are:

       srtp_in_suite
       srtp_out_suite
	   Select input and output encoding suites.

	   Supported values:

	   AES_CM_128_HMAC_SHA1_80
	   SRTP_AES128_CM_HMAC_SHA1_80
	   AES_CM_128_HMAC_SHA1_32
	   SRTP_AES128_CM_HMAC_SHA1_32
       srtp_in_params
       srtp_out_params
	   Set input and output encoding parameters, which are expressed by a
	   base64-encoded representation of a binary block. The first 16 bytes
	   of this binary block are used as master key, the following 14 bytes
	   are used as master salt.

   tcp
       Transmission Control Protocol.

       The required syntax for a TCP url is:

	       tcp://<hostname>:<port>[?<options>]

       options contains a list of &-separated options of the form key=val.

       The list of supported options follows.

       listen=1|0
	   Listen for an incoming connection. Default value is 0.

       timeout=microseconds
	   Set raise error timeout, expressed in microseconds.

	   This option is only relevant in read mode: if no data arrived in
	   more than this time interval, raise error.

       listen_timeout=microseconds
	   Set listen timeout, expressed in microseconds.

       The following example shows how to setup a listening TCP connection
       with ffmpeg, which is then accessed with ffplay:

	       ffmpeg -i <input> -f <format> tcp://<hostname>:<port>?listen
	       ffplay tcp://<hostname>:<port>

   tls
       Transport Layer Security (TLS) / Secure Sockets Layer (SSL)

       The required syntax for a TLS/SSL url is:

	       tls://<hostname>:<port>[?<options>]

       The following parameters can be set via command line options (or in
       code via "AVOption"s):

       ca_file, cafile=filename
	   A file containing certificate authority (CA) root certificates to
	   treat as trusted. If the linked TLS library contains a default this
	   might not need to be specified for verification to work, but not
	   all libraries and setups have defaults built in.  The file must be
	   in OpenSSL PEM format.

       tls_verify=1|0
	   If enabled, try to verify the peer that we are communicating with.
	   Note, if using OpenSSL, this currently only makes sure that the
	   peer certificate is signed by one of the root certificates in the
	   CA database, but it does not validate that the certificate actually
	   matches the host name we are trying to connect to. (With GnuTLS,
	   the host name is validated as well.)

	   This is disabled by default since it requires a CA database to be
	   provided by the caller in many cases.

       cert_file, cert=filename
	   A file containing a certificate to use in the handshake with the
	   peer.  (When operating as server, in listen mode, this is more
	   often required by the peer, while client certificates only are
	   mandated in certain setups.)

       key_file, key=filename
	   A file containing the private key for the certificate.

       listen=1|0
	   If enabled, listen for connections on the provided port, and assume
	   the server role in the handshake instead of the client role.

       Example command lines:

       To create a TLS/SSL server that serves an input stream.

	       ffmpeg -i <input> -f <format> tls://<hostname>:<port>?listen&cert=<server.crt>&key=<server.key>

       To play back a stream from the TLS/SSL server using ffplay:

	       ffplay tls://<hostname>:<port>

   udp
       User Datagram Protocol.

       The required syntax for an UDP URL is:

	       udp://<hostname>:<port>[?<options>]

       options contains a list of &-separated options of the form key=val.

       In case threading is enabled on the system, a circular buffer is used
       to store the incoming data, which allows one to reduce loss of data due
       to UDP socket buffer overruns. The fifo_size and overrun_nonfatal
       options are related to this buffer.

       The list of supported options follows.

       buffer_size=size
	   Set the UDP socket buffer size in bytes. This is used both for the
	   receiving and the sending buffer size.

       localport=port
	   Override the local UDP port to bind with.

       localaddr=addr
	   Choose the local IP address. This is useful e.g. if sending
	   multicast and the host has multiple interfaces, where the user can
	   choose which interface to send on by specifying the IP address of
	   that interface.

       pkt_size=size
	   Set the size in bytes of UDP packets.

       reuse=1|0
	   Explicitly allow or disallow reusing UDP sockets.

       ttl=ttl
	   Set the time to live value (for multicast only).

       connect=1|0
	   Initialize the UDP socket with "connect()". In this case, the
	   destination address can't be changed with ff_udp_set_remote_url
	   later.  If the destination address isn't known at the start, this
	   option can be specified in ff_udp_set_remote_url, too.  This allows
	   finding out the source address for the packets with getsockname,
	   and makes writes return with AVERROR(ECONNREFUSED) if "destination
	   unreachable" is received.  For receiving, this gives the benefit of
	   only receiving packets from the specified peer address/port.

       sources=address[,address]
	   Only receive packets sent to the multicast group from one of the
	   specified sender IP addresses.

       block=address[,address]
	   Ignore packets sent to the multicast group from the specified
	   sender IP addresses.

       fifo_size=units
	   Set the UDP receiving circular buffer size, expressed as a number
	   of packets with size of 188 bytes. If not specified defaults to
	   7*4096.

       overrun_nonfatal=1|0
	   Survive in case of UDP receiving circular buffer overrun. Default
	   value is 0.

       timeout=microseconds
	   Set raise error timeout, expressed in microseconds.

	   This option is only relevant in read mode: if no data arrived in
	   more than this time interval, raise error.

       Examples

       ·   Use ffmpeg to stream over UDP to a remote endpoint:

		   ffmpeg -i <input> -f <format> udp://<hostname>:<port>

       ·   Use ffmpeg to stream in mpegts format over UDP using 188 sized UDP
	   packets, using a large input buffer:

		   ffmpeg -i <input> -f mpegts udp://<hostname>:<port>?pkt_size=188&buffer_size=65535

       ·   Use ffmpeg to receive over UDP from a remote endpoint:

		   ffmpeg -i udp://[<multicast-address>]:<port> ...

   unix
       Unix local socket

       The required syntax for a Unix socket URL is:

	       unix://<filepath>

       The following parameters can be set via command line options (or in
       code via "AVOption"s):

       timeout
	   Timeout in ms.

       listen
	   Create the Unix socket in listening mode.

SEE ALSO
       ffmpeg(1), ffplay(1), ffprobe(1), ffserver(1), libavformat(3)

AUTHORS
       The FFmpeg developers.

       For details about the authorship, see the Git history of the project
       (git://source.ffmpeg.org/ffmpeg), e.g. by typing the command git log in
       the FFmpeg source directory, or browsing the online repository at
       <http://source.ffmpeg.org>.

       Maintainers for the specific components are listed in the file
       MAINTAINERS in the source code tree.

				  2014-06-04		   FFMPEG-PROTOCOLS(1)
[top]

List of man pages available for Alpinelinux

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net