DLATRS(1) LAPACK auxiliary routine (version 3.2) DLATRS(1)[top]NAMEDLATRS - solves one of the triangular systems A *x = s*b or A'*x = s*b with scaling to prevent overflowSYNOPSISSUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE, CNORM, INFO ) CHARACTER DIAG, NORMIN, TRANS, UPLO INTEGER INFO, LDA, N DOUBLE PRECISION SCALE DOUBLE PRECISION A( LDA, * ), CNORM( * ), X( * )PURPOSEDLATRS solves one of the triangular systems triangular matrix, A' denotes the transpose of A, x and b are n-element vectors, and s is a scaling factor, usually less than or equal to 1, chosen so that the components of x will be less than the overflow threshold. If the unscaled problem will not cause overflow, the Level 2 BLAS routine DTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j), then s is set to 0 and a non-trivial solution to A*x = 0 is returned.ARGUMENTSUPLO (input) CHARACTER*1 Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular TRANS (input) CHARACTER*1 Specifies the operation applied to A. = 'N': Solve A * x = s*b (No transpose) = 'T': Solve A'* x = s*b (Transpose) = 'C': Solve A'* x = s*b (Conjugate transpose = Transpose) DIAG (input) CHARACTER*1 Specifies whether or not the matrix A is unit triangular. = 'N': Non-unit triangular = 'U': Unit triangular NORMIN (input) CHARACTER*1 Specifies whether CNORM has been set or not. = 'Y': CNORM contains the column norms on entry = 'N': CNORM is not set on entry. On exit, the norms will be computed and stored in CNORM. N (input) INTEGER The order of the matrix A. N >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The triangular matrix A. If UPLO = 'U', the leading n by n upper triangular part of the array A contains the upper trian‐ gular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n by n lower trian‐ gular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = 'U', the diagonal elements of A are also not refer‐ enced and are assumed to be 1. LDA (input) INTEGER The leading dimension of the array A. LDA >= max (1,N). X (input/output) DOUBLE PRECISION array, dimension (N) On entry, the right hand side b of the triangular system. On exit, X is overwritten by the solution vector x. SCALE (output) DOUBLE PRECISION The scaling factor s for the triangular system A * x = s*b or A'* x = s*b. If SCALE = 0, the matrix A is singular or badly scaled, and the vector x is an exact or approximate solution to A*x = 0. CNORM (input or output) DOUBLE PRECISION array, dimension (N) If NORMIN = 'Y', CNORM is an input argument and CNORM(j) con‐ tains the norm of the off-diagonal part of the j-th column of A. If TRANS = 'N', CNORM(j) must be greater than or equal to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) must be greater than or equal to the 1-norm. If NORMIN = 'N', CNORM is an output argument and CNORM(j) returns the 1-norm of the off‐ diagonal part of the j-th column of A. INFO (output) INTEGER = 0: successful exit < 0: if INFO =, the k-th argument had an illegal value-kFURTHER DETAILSA rough bound on x is computed; if that is less than overflow, DTRSV is called, otherwise, specific code is used which checks for possible overflow or divide-by-zero at every operation. A columnwise scheme is used for solving A*x = b. The basic algorithm if A is lower triangular is x[1:n] := b[1:n] for j = 1, ..., n x(j) := x(j) / A(j,j) x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] end Define bounds on the components of x after j iterations of the loop: M(j) = bound on x[1:j] G(j) = bound on x[j+1:n] Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}. Then for iteration j+1 we have M(j+1) <= G(j) / | A(j+1,j+1) | G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) where CNORM(j+1) is greater than or equal to the infinity-norm of col‐ umn j+1 of A, not counting the diagonal. Hence G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) 1<=i<=j and |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) 1<=i< j Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the reciprocal of the largest M(j), j=1,..,n, is larger than max(underflow, 1/overflow). The bound on x(j) is also used to determine when a step in the column‐ wise method can be performed without fear of overflow. If the computed bound is greater than a large constant, x is scaled to prevent over‐ flow, but if the bound overflows, x is set to 0, x(j) to 1, and scale to 0, and a non-trivial solution to A*x = 0 is found. Similarly, a row-wise scheme is used to solve A'*x = b. The basic algorithm for A upper triangular is for j = 1, ..., n x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) end We simultaneously compute two bounds G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j M(j) = bound on x(i), 1<=i<=j The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. Then the bound on x(j) is M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) 1<=i<=j and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater than max(underflow, 1/overflow). LAPACK auxiliary routine (versioNovember 2008 DLATRS(1)

List of man pages available for

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]

Polar

Member of Polar

Based on Fawad Halim's script.

....................................................................

Vote for polarhome |