DGELSD(1) LAPACK driver routine (version 3.2) DGELSD(1)[top]NAMEDGELSD - computes the minimum-norm solution to a real linear least squares problemSYNOPSISSUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, IWORK, INFO ) INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK DOUBLE PRECISION RCOND INTEGER IWORK( * ) DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( * ), WORK( * )PURPOSEDGELSD computes the minimum-norm solution to a real linear least squares problem: minimize 2-norm(| b - A*x |) using the singular value decomposition (SVD) of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The problem is solved in three steps: (1) Reduce the coefficient matrix A to bidiagonal form with Householder transformations, reducing the original problem into a "bidiagonal least squares problem" (BLS) (2) Solve the BLS using a divide and conquer approach. (3) Apply back all the Householder tranformations to solve the original least squares problem. The effective rank of A is determined by treating as zero those singu‐ lar values which are less than RCOND times the largest singular value. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard dig‐ its, but we know of none.ARGUMENTSM (input) INTEGER The number of rows of A. M >= 0. N (input) INTEGER The number of columns of A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, A has been destroyed. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the M-by-NRHS right hand side matrix B. On exit, B is overwritten by the N-by-NRHS solution matrix X. If m >= n and RANK = n, the residual sum-of-squares for the solution in the i-th column is given by the sum of squares of elements n+1:m in that column. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,max(M,N)). S (output) DOUBLE PRECISION array, dimension (min(M,N)) The singular values of A in decreasing order. The condition number of A in the 2-norm = S(1)/S(min(m,n)). RCOND (input) DOUBLE PRECISION RCOND is used to determine the effective rank of A. Singular values S(i) <= RCOND*S(1) are treated as zero. If RCOND < 0, machine precision is used instead. RANK (output) INTEGER The effective rank of A, i.e., the number of singular values which are greater than RCOND*S(1). WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK must be at least 1. The exact minimum amount of workspace needed depends on M, N and NRHS. As long as LWORK is at least 12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2, if M is greater than or equal to N or 12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2, if M is less than N, the code will execute correctly. SMLSIZ is returned by ILAENV and is equal to the maximum size of the sub‐ problems at the bottom of the computation tree (usually about 25), and NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) For good performance, LWORK should generally be larger. If LWORK =, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error mes‐ sage related to LWORK is issued by XERBLA. IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK)) LIWORK >= 3 * MINMN * NLVL + 11 * MINMN, where MINMN = MIN( M,N ). INFO (output) INTEGER = 0: successful exit < 0: if INFO =-1, the i-th argument had an illegal value. > 0: the algorithm for computing the SVD failed to converge; if INFO = i, i off-diagonal elements of an intermediate bidiag‐ onal form did not converge to zero.-iFURTHER DETAILSBased on contributions by Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA Osni Marques, LBNL/NERSC, USA LAPACK driver routine (version 3November 2008 DGELSD(1)

List of man pages available for

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]

Polar

Member of Polar

Based on Fawad Halim's script.

....................................................................

Vote for polarhome |