dcc man page on DragonFly

Man page or keyword search:  
man Server   44335 pages
apropos Keyword Search (all sections)
Output format
DragonFly logo
[printable version]

DCC(8)		      Distributed Checksum Clearinghouse		DCC(8)

NAME
     DCC — Distributed Checksum Clearinghouse

DESCRIPTION
     The Distributed Checksum Clearinghouse or DCC is a cooperative, distrib‐
     uted system intended to detect "bulk" mail or mail sent to many people.
     It allows individuals receiving a single mail message to determine that
     many other people have received essentially identical copies of the mes‐
     sage and so reject or discard the message.

     Source is available at http://www.dcc-servers.net/dcc/ free for organiza‐
     tions that do not sell spam or virus filtering services.

   How the DCC Is Used
     The DCC can be viewed as a tool for end users to enforce their right to
     "opt-in" to streams of bulk mail by refusing bulk mail except from
     sources in a "whitelist."	Whitelists are the responsibility of DCC
     clients, since only they know which bulk mail they solicited.

     False positives or mail marked as bulk by a DCC server that is not bulk
     occur only when a recipient of a message reports it to a DCC server as
     having been received many times or when the "fuzzy" checksums of differ‐
     ing messages are the same.	 The fuzzy checksums ignore aspects of mes‐
     sages in order to compute identical checksums for substantially identical
     messages.	The fuzzy checksums are designed to ignore only differences
     that do not affect meanings.  So in practice, you do not need to worry
     about DCC false positive indications of "bulk," but not all bulk mail is
     unsolicited bulk mail or spam.  You must either use whitelists to distin‐
     guish solicited from unsolicited bulk mail or only use DCC indications of
     "bulk" as part of a scoring system such as SpamAssassin.  Besides unso‐
     licited bulk email or spam, bulk messages include legitimate mail such as
     order confirmations from merchants, legitimate mailing lists, and empty
     or test messages.

     A DCC server estimates the number copies of a message by counting check‐
     sums reported by DCC clients.  Each client must decide which bulk mes‐
     sages are unsolicited and what degree of "bulkiness" is objectionable.
     Client DCC software marks, rejects, or discards mail that is bulk accord‐
     ing to local thresholds on target addresses from DCC servers and unso‐
     licited according to local whitelists.

     DCC servers are usually configured to receive reports from as many tar‐
     gets as possible, including sources that cannot be trusted to not exag‐
     gerate the number of copies of a message they see.	 A user of a DCC
     client angry about receiving a message could report it with 1,000,000
     separate DCC reports or with a single report claiming 1,000,000 targets.
     An unprincipled user could subscribe a "spam trap" to mailing lists such
     as those of the IETF or CERT.  Such abuses of the system area not prob‐
     lems, because much legitimate mail is "bulk."  You cannot reject bulk
     mail unless you have a whitelist of sources of legitimate bulk mail.

     DCC can also be used by an Internet service provider to detect bulk mail
     coming from its own customers.  In such circumstances, the DCC client
     might be configured to only log bulk mail from unexpected (not
     whitelisted) customers.

   What the DCC Is
     A DCC server accumulates counts of cryptographic checksums of messages
     but not the messages themselves.  It exchanges reports of frequently seen
     checksums with other servers.  DCC clients send reports of checksums
     related to incoming mail to a nearby DCC server running dccd(8).  Each
     report from a client includes the number of recipients for the message.
     A DCC server accumulates the reports and responds to clients the the cur‐
     rent total number of recipients for each checksum.	 The client adds an
     SMTP header to incoming mail containing the total counts.	It then dis‐
     cards or rejects mail that is not whitelisted and has counts that exceed
     local thresholds.

     A special value of the number of addressees is "MANY" and means this mes‐
     sage was certainly bulk and might be unsolicited, perhaps because it came
     from a locally blacklisted source or was addressed to an invalid address
     or "spam trap."  The special value "MANY" is merely the largest value
     that fits in the database field containing the count of addressees.  That
     "infinite" accumulated total can be reached with millions of independent
     reports as well as with one or two.

     DCC servers flood or send reports of checksums of bulk mail to neighbor‐
     ing servers.

     To keep a server's database of checksums from growing without bound,
     checksums are forgotten when they become old.  Checksums of bulk mail are
     kept longer.  See dbclean(8).

     DCC clients pick the nearest working DCC server using a small shared or
     memory mapped file, /usr/local/dcc/map.  It contains server names, port
     numbers, passwords, recent performance measures, and so forth.  This file
     allows clients to use quick retransmission timeouts and to waste little
     time on servers that have temporarily stopped working or become unreach‐
     able.  The utility program cdcc(8) is used to maintain this file as well
     as to check the health of servers.

   X-DCC Headers
     The DCC software includes several programs used by clients.  Dccm(8) uses
     the sendmail "milter" interface to query a DCC server, add header lines
     to incoming mail, and reject mail whose total checksum counts are high.
     Dccm is intended to be run with SMTP servers using sendmail.

     Dccproc(8) adds header lines to mail presented by file name or stdin, but
     relies on other programs such as procmail to deal with mail with large
     counts.  Dccsight(8) is similar but deals with previously computed check‐
     sums.

     Dccifd(8) is similar to dccproc but is not run separately for each mail
     message and is more efficient.  It receives mail messages via a socket
     somewhat like dccm, but with a simpler protocol that can be used by Perl
     scripts or other programs.	 Dccifd can also be used as a postfix "Before-
     Queue Content Filter."

     DCC SMTP header lines are of one of the forms:

       X-DCC-brand-Metrics: client server-ID; bulk cknm1=count cknm2=count ...
       X-DCC-brand-Metrics: client; whitelist
     where
	whitelist appears if the global /usr/local/dcc/whiteclnt or per-user
		file marks the message as good.
	brand	is the "brand name" of the DCC server, such as "RHYOLITE".
	client	is the name or IP address of the DCC client that added the
		header line to the SMTP message.
	server-ID is the numeric ID of the DCC server that the DCC client con‐
		tacted.
	bulk	is present if one or more checksum counts exceeded the DCC
		client's thresholds to make the message "bulky."
	bulk rep is present if the DCC reputation of the IP address of the
		sender is bad.
	cknm1,cknm2,... are types of checksums:
		  IP	       address of SMTP client
		  env_From     SMTP envelope value
		  From	       SMTP header line
		  Message-ID   SMTP header line
		  Received     last Received: header line in the SMTP message
		  substitute   SMTP header line chosen by the DCC client, pre‐
			       fixed with the name of the header
		  Body	       SMTP body ignoring white-space
		  Fuz1	       filtered or "fuzzy" body checksum
		  Fuz2	       another filtered or "fuzzy" body checksum
		  rep	       DCC reputation of the mail sender or the esti‐
			       mated probability that the message is bulk.
		Counts for IP, env_From, From, Message-Id, Received, and
		substitute checksums are omitted by the DCC client if the
		server says it has no information.  Counts for Fuz1 and Fuz2
		are omitted if the message body is empty or contains too lit‐
		tle of the right kind of information for the checksum to be
		computed.
	count	is the total number of recipients of messages with that check‐
		sum reported directly or indirectly to the DCC server.	The
		special count "MANY" means that DCC client have claimed that
		the message is directed at millions of recipients.  "MANY"
		imples the message is definitely bulk, but not necessarily
		unsolicited.  The special counts "OK" and "OK2" mean the
		checksum has been marked "good" or "half-good" by DCC servers.

   Mailing lists
     Legitimate mailing list traffic differs from spam only in being solicited
     by recipients.  Each client should have a private whitelist.

     DCC whitelists can also mark mail as unsolicited bulk using blacklist
     entries for commonly forged values such as "From: user@public.com".

   White and Blacklists
     DCC server and client whitelist files share a common format.  Server
     files are always named whitelist and one is required to be in the DCC
     home directory with the other server files.  Client whitelist files are
     named /usr/local/dcc/whiteclnt in the DCC home directory or a per-user
     subdirectory of the directory specified with the -U option for dccm(8) or
     dccifd(8).	 They specify mail that should not be reported to a DCC server
     or that is always unsolicited and almost certainly bulk.

     A DCC whitelist file contains blank lines, comments starting with "#",
     and lines of the following forms:
       include file
	     Copies the contents of file into the whitelist.  It cannot occur
	     in an included file.  The file name is relative to the DCC home
	     directory if not absolute.

       count value
	     lines specify checksums that should be white- or blacklisted.
	       count env_From 821-path
	       count env_To dest-mailbox
	       count From 822-mailbox
	       count Message-ID <string>
	       count Received string
	       count Substitute header string
	       count Hex ctype cksum
	       count IP hosts

	       MANY value
		     indicates that millions of targets have received messages
		     with the header, IP address, or checksum value.
	       OK value
	       OK2 value
		     say that messages with the header, IP address, or check‐
		     sum value are OK and should not reported to DCC servers
		     or be greylisted.	OK2 says that the message is "half
		     OK."  Two OK2 checksums associated with a message are
		     equivalent to one OK.
		     A DCC server never shares or floods reports containing
		     checksums marked in its whitelist with OK or OK2 to other
		     servers.  A DCC client does not report or ask its server
		     about messages with a checksum marked OK or OK2 in the
		     client whitelist.	This is intended to allow a DCC client
		     to keep private mail so private that even its checksums
		     are not disclosed.
	       MX IP hosts
	       MXDCC IP hosts
		     mark an IP address or block of addresses of trusted mail
		     relays including MX servers, smart hosts, and bastion or
		     DMZ relays.  The DCC clients dccm(8), dccifd(8), and
		     dccproc(8) parse and skip initial Received: headers added
		     by listed MX servers to determine the external sources of
		     mail messages.  Unsolicited bulk mail that has been for‐
		     warded through listed addresses is discarded by dccm(8)
		     and dccifd(8) as if with -a DISCARD instead of rejected.
		     MXDCC marks addresses that are MX servers that run DCC
		     clients.  The checksums for a mail message that has been
		     forwarded through an address listed as MXDCC are queried
		     instead of reported by a DCC client.
		     dccd(8) treats MXDCC and MX lines in the
		     /usr/local/dcc/whitelist file as if they were OK lines.
	       SUBMIT IP hosts
		     marks an IP address or block of addresses of SMTP submis‐
		     sion clients such as web browsers that cannot tolerate
		     4yz temporary rejections but that cannot be trusted to
		     not send spam.  Since they are local addresses, DCC Repu‐
		     tations are not computed for them.
		     dccd(8) ignores SUBMIT lines in the
		     /usr/local/dcc/whitelist file.

	     value in count value lines can be
	       dest-mailbox
		     is an RFC 821 address or a local user name.
	       821-path
		     is an RFC 821 address.
	       822-mailbox
		     is an RFC 822 address with optional name.
	       Substitute header
		     is the name of an SMTP header such as "Sender" or the
		     name of one of two SMTP envlope values, "HELO," or
		     "Mail_Host" for the resolved host name from the 821-path
		     in the message.
	       Hex ctype cksum
		     starts with the string Hex followed a checksum type, and
		     a string of four hexadecimal numbers obtained from a DCC
		     log file or the dccproc(8) command using -CQ.  The check‐
		     sum type is body, Fuz1, or Fuz2 or one of the preceding
		     checksum types such as env_From.
	       hosts
		     is a host name, an IPv4 or IPv6 address, a block of IP
		     addresses specified as starting and ending addresses sep‐
		     arated by a dash (-), or a block in the standard xxx/mm
		     form.  A host name is converted to IP addresses with DNS,
		     the /etc/hosts file, or other mechanisms.
		     The /usr/local/dcc/whitelist file used by the DCC server.
		     dccd(8), treats all host names, IP addresses, and address
		     blocks the same.  Each IP address must be added to the
		     DCC database as its checksum.  DCC servers only hear
		     about checksums and so could not use a list of IP
		     addresses.	 To prevent accidentally adding billions of
		     records to the database (contemplate a line like "OK IP
		     fe80::0/120), server whitelist entries cannot specify
		     blocks larger than 65,536 or /16.
		     The DCC clients, dccifd(8), dccm(8) or dccproc(8), know
		     about IP addresses and so their whitelists can contain IP
		     addresses.	 The global /usr/local/dcc/whiteclnt file or a
		     per-user whiteclnt file can contain up to 64 ranges of
		     256 or more IP addresses.	Smaller ranges are added as
		     individual entries.

       option setting
	     can only be in a DCC client whiteclnt file used by dccifd(8),
	     dccm(8) or dccproc(8).  Settings in per-user whiteclnt files
	     override settings in the global /usr/local/dcc/whiteclnt file.
	     Setting can be any of the following:
	       option log-all
		   to log all mail messages.
	       option log-normal
		   to log only messages that meet the logging thresholds.
	       option log-subdirectory-day
	       option log-subdirectory-hour
	       option log-subdirectory-minute
		   puts log files for mail messages in subdirectories of the
		   userdirs/addr/log directory specified with -U userdirs for
		   dccm(8) or dccifd(8).  The subsdirectories are of the form
		   JJJ, JJJ/HH, or JJJ/HH/MM where JJJ is the current julian
		   day, HH is the current hour, and MM is the current minute.
		   See also -l logdir for dccm(8), dccifd(8), and dccproc(8).
	       option DCC-on
	       option DCC-off
		   to control DCC filtering.
	       option greylist-on
	       option greylist-off
		   to control greylisting if enabled in dccm(8) or dccifd(8)
		   with -G.  Greylisting for other recipients in the same SMTP
		   transaction can still cause greylist temporary rejections.
	       option greylist-ignore-spam-on
	       option greylist-ignore-spam-off
		   causes greylisting to ignore the results of other filters.
		   If off, spam is rejected regardless of greylist embargoes
		   and future embargoes for the sending IP address are
		   restored or reset.  If this option is on, greylist delays
		   or embargoes are required before spam is rejected and
		   future embargoes on spam sending IP addresses are not
		   reset.
	       option greylist-log-on
	       option greylist-log-off
		   to control per-user logging of greylisted mail messages.
		   Logging of greylisted messages in the main log directory is
		   not affected.
	       option DCC-rep-off
	       option DCC-rep-on
		   to honor or ignore DCC Reputations computed by the DCC
		   server.
	       option DNSBL1-off
	       option DNSBL1-on
	       option DNSBL2-off
	       option DNSBL2-on
	       option DNSBL3-off
	       option DNSBL3-on
	       option DNSBL4-off
	       option DNSBL4-on
		   honor or ignore results of DNS blacklist checks configured
		   with -B for dccm(8), dccifd(8), and dccproc(8).
	       option MTA-first
	       option MTA-last
		   consider MTA determinations of spam or not-spam first so
		   they can be overridden by whiteclnt files, or last so that
		   they can override whiteclnt files.
	       option forced-discard-ok
	       option no-forced-discard
		   control whether dccm(8) and dccifd(8) are allowed to dis‐
		   card a message for one mailbox for which it is spam when it
		   is not spam and must be delivered to another mailbox.  This
		   can happen if a mail message is addressed to two or more
		   mailboxes with differing whitelists.	 Discarding can be
		   undesirable because false positives are not communicated to
		   mail senders.  To avoid discarding, dccm(8) and dccifd(8)
		   running in proxy mode temporarily reject SMTP envelope Rcpt
		   To values that involve differing whiteclnt files.
	       option threshold type,rej-thold
		   has the same effects as -c type,rej-thold for dccproc(8) or
		   -t type,rej-thold for dccm(8) and dccifd(8).	 It is useful
		   only in per-user whiteclnt files to override the global DCC
		   checksum thresholds.
	       option spam-trap-discard
	       option spam-trap-reject
		   say that mail should be reported to the DCC server as
		   extremely bulk or with target counts of MANY.  Greylisting,
		   DNS blacklist (DNSBL), and other checks are turned off.
		   Spam-trap-discard tells the MTA to accept the message while
		   spam-trap-reject tells the MTA to reject the message.  Use
		   Spam-trap-discard for spam traps that should not be dis‐
		   closed.  Spam-trap-reject can be used  on catch-all mail‐
		   boxes that might receive legitimate mail by typographical
		   errors and that senders should be told about.
	       option not-spam-trap
		   turns off spam-trap-discard and spam-trap-reject.

	     In the absence of explicit settings, the default in the main
	     whiteclnt file is equivalent to
		 option log-normal
		 option DCC-on
		 option greylist-on
		 option greylist-ignore-spam-off
		 option greylist-log-on
		 option DCC-rep-off
		 option DNSBL1-off
		 option DNSBL2-off
		 option DNSBL3-off
		 option DNSBL4-off
		 option MTA-last
		 option no-forced-discard
	     The defaults for individual recipient whiteclnt files are the
	     same except as change by explicit settings in the main file.

     Checksums of the IP address of the SMTP client sending a mail message are
     practically unforgeable, because it is impractical for an SMTP client to
     "spoof" its address or pretend to use some other IP address.  That would
     make the IP address of the sender useful for whitelisting, except that
     the IP address of the SMTP client is often not available to users of
     dccproc(8).  In addition, legitimate mail relays make whitelist entries
     for IP addresses of little use.  For example, the IP address from which a
     message arrived might be that of a local relay instead of the home
     address of a whitelisted mailing list.

     Envelope and header From values can be forged, so whitelist entries for
     their checksums are not entirely reliable.

     Checksums of env_To values are never sent to DCC servers.	They are valid
     in only whiteclnt files and used only by dccm(8), dccifd(8), and
     dccproc(8) when the envelope Rcpt To value is known.

   Greylists
     The DCC server, dccd(8), can be used to maintain a greylist database for
     some DCC clients including dccm(8) and dccifd(8).	Greylisting involves
     temporarily refusing mail from unfamiliar SMTP clients and is unrelated
     to filtering with a Distributed Checksum Clearinghouse.
     See http://projects.puremagic.com/greylisting/

   Privacy
     Because sending mail is a less private act than receiving it, and because
     sending bulk mail is usually not private at all and cannot be very pri‐
     vate, the DCC tries first to protect the privacy of mail recipients, and
     second the privacy of senders of mail that is not bulk.

     DCC clients necessarily disclose some information about mail they have
     received.	The DCC database contains checksums of mail bodies, header
     lines, and source addresses.  While it contains significantly less infor‐
     mation than is available by "snooping" on Internet links, it is important
     that the DCC database be treated as containing sensitive information and
     to not put the most private information in the DCC database.  Given the
     contents of a message, one might determine whether that message has been
     received by a system that subscribes to the DCC.  Guesses about the
     sender and addressee of a message can also be validated if the checksums
     of the message have been sent to a DCC server.

     Because the DCC is distributed, organizations can operate their own DCC
     servers, and configure them to share or "flood" only the checksums of
     bulk mail that is not in local whitelists.

     DCC clients should not report the checksums of messages known to be pri‐
     vate to a DCC server.  For example, checksums of messages local to a sys‐
     tem or that are otherwise known a priori to not be unsolicited bulk
     should not be sent to a remote DCC server.	 This can accomplished by
     adding entries for the sender to the client's local whitelist file.
     Client whitelist files can also include entries for email recipients
     whose mail should not be reported to a DCC server.

   Security
     Whenever considering security, one must first consider the risks.	The
     worst DCC security problems are unauthorized commands to a DCC service,
     denial of the DCC service, and corruption of DCC data.  The worst that
     can be done with remote commands to a DCC server is to turn it off or
     otherwise cause it to stop responding.  The DCC is designed to fail
     gracefully, so that a denial of service attack would at worst allow
     delivery of mail that would otherwise be rejected.	 Corruption of DCC
     data might at worst cause mail that is already somewhat "bulk" by virtue
     of being received by two or more people to appear have higher recipient
     numbers.  Since DCC users must whitelist all sources of legitimate bulk
     mail, this is also not a concern.	Such security risks should be
     addressed, but only with defenses that don't cost more than the possible
     damage from an attack.

     The DCC must contend with senders of unsolicited bulk mail who resort to
     unlawful actions to express their displeasure at having their advertising
     blocked.  Because the DCC protocol is based on UDP, an unhappy advertiser
     could try to flood a DCC server with packets supposedly from subscribers
     or non-subscribers.  DCC servers defend against that attack by rate-lim‐
     iting requests from anonymous users.

     Also because of the use of UDP, clients must be protected against forged
     answers to their queries.	Otherwise an unsolicited bulk mail advertiser
     could send a stream of "not spam" answers to an SMTP client while simul‐
     taneously sending mail that would otherwise be rejected.  This is not a
     problem for authenticated clients of the DCC because they share a secret
     with the DCC.  Unauthenticated, anonymous DCC clients do not share any
     secrets with the DCC, except for unique and unpredictable bits in each
     query or report sent to the DCC.  Therefore, DCC servers cryptographi‐
     cally sign answers to unauthenticated clients with bits from the corre‐
     sponding queries.	This protects against attackers that do not have
     access to the stream of packets from the DCC client.

     The passwords or shared secrets used in the DCC client and server pro‐
     grams are "cleartext" for several reasons.	 In any shared secret authen‐
     tication system, at least one party must know the secret or keep the
     secret in cleartext.  You could encrypt the secrets in a file, but
     because they are used by programs, you would need a cleartext copy of the
     key to decrypt the file somewhere in the system, making such a scheme
     more expensive but no more secure than a file of cleartext passwords.
     Asymmetric systems such as that used in UNIX allow one party to not know
     the secrets, but they must be and are designed to be computationally
     expensive when used in applications like the DCC that involve thousands
     or more authentication checks per second.	Moreover, because of "dictio‐
     nary attacks," asymmetric systems are now little more secure than keeping
     passwords in cleartext.  An adversary can compare the hash values of com‐
     binations of common words with /etc/passwd hash values to look for bad
     passwords.	 Worse, by the nature of a client/server protocol like that
     used in the DCC, clients must have the cleartext password.	 Since it is
     among the more numerous and much less secure clients that adversaries
     would seek files of DCC passwords, it would be a waste to complicate the
     DCC server with an asymmetric system.

     The DCC protocol is vulnerable to dictionary attacks to recover pass‐
     words.  An adversary could capture some DCC packets, and then check to
     see if any of the 100,000 to 1,000,000 passwords in so called "cracker
     dictionaries" applied to a packet generated the same signature.  This is
     a concern only if DCC passwords are poorly chosen, such as any combina‐
     tion of words in an English dictionary.  There are ways to prevent this
     vulnerability regardless of how badly passwords are chosen, but they are
     computationally expensive and require additional network round trips.
     Since DCC passwords are created and typed into files once and do not need
     to be remembered by people, it is cheaper and quite easy to simply choose
     good passwords that are not in dictionaries.

   Reliability
     It is better to fail to filter unsolicited bulk mail than to fail to
     deliver legitimate mail, so DCC clients fail in the direction of assuming
     that mail is legitimate or even whitelisted.

     A DCC client sends a report or other request and waits for an answer.  If
     no answer arrives within a reasonable time, the client retransmits.
     There are many things that might result in the client not receiving an
     answer, but the most important is packet loss.  If the client's request
     does not reach the server, it is easy and harmless for the client to
     retransmit.  If the client's request reached the server but the server's
     response was lost, a retransmission to the same server would be misunder‐
     stood as a new report of another copy of the same message unless it is
     detected as a retransmission by the server.  The DCC protocol includes
     transactions identifiers for this purpose.	 If the client retransmitted
     to a second server, the retransmission would be misunderstood by the sec‐
     ond server as a new report of the same message.

     Each request from a client includes a timestamp to aid the client in mea‐
     suring the round trip time to the server and to let the client pick the
     closest server.  Clients monitor the speed of all of the servers they
     know including those they are not currently using, and use the quickest.

   Client and Server-IDs
     Servers and clients use numbers or IDs to identify themselves.  ID 1 is
     reserved for anonymous, unauthenticated clients.  All other IDs are asso‐
     ciated with a pair of passwords in the ids file, the current and next or
     previous and current passwords.  Clients included their client IDs in
     their messages.  When they are not using the anonymous ID, they sign
     their messages to servers with the first password associated with their
     client-ID.	 Servers treat messages with signatures that match neither of
     the passwords for the client-ID in their own ids file as if the client
     had used the anonymous ID.

     Each server has a unique server-ID less than 32768.  Servers use their
     IDs to identify checksums that they flood to other servers.  Each server
     expects local clients sending administrative commands to use the server's
     ID and sign administrative commands with the associated password.

     Server-IDs must be unique among all systems that share reports by "flood‐
     ing."  All servers must be told of the IDs all other servers whose
     reports can be received in the local /usr/local/dcc/flod file described
     in dccd(8).  However, server-IDs can be mapped during flooding between
     independent DCC organizations.

     Passwd-IDs are server-IDs that should not be assigned to servers.	They
     appear in the often publicly readable /usr/local/dcc/flod and specify
     passwords in the private /usr/local/dcc/ids file for the inter-server
     flooding protocol

     The client identified by a client-ID might be a single computer with a
     single IP address, a single but multi-homed computer, or many computers.
     Client-IDs are not used to identify checksum reports, but the organiza‐
     tion operating the client.	 A client-ID need only be unique among clients
     using a single server.  A single client can use different client-IDs for
     different servers, each client-ID authenticated with a separate password.

     An obscure but important part of all of this is that the inter-server
     flooding algorithm depends on server-IDs and timestamps attached to
     reports of checksums.  The inter-server flooding mechanism requires coop‐
     erating DCC servers to maintain reasonable clocks ticking in UTC.
     Clients include timestamps in their requests, but as long as their time‐
     stamps are unlikely to be repeated, they need not be very accurate.

   Installation Considerations
     DCC clients on a computer share information about which servers are cur‐
     rently working and their speeds in a shared memory segment.  This segment
     also contains server host names, IP addresses, and the passwords needed
     to authenticate known clients to servers.	That generally requires that
     dccm(8), dccproc(8), dccifd(8), and cdcc(8) execute with an UID that can
     write to the DCC home directory and its files.  The sendmail interface,
     dccm, is a daemon that can be started by an "rc" or other script already
     running with the correct UID.  The other two, dccproc and cdcc need to be
     set-UID because they are used by end users.  They relinquish set-UID
     privileges when not needed.

     Files that contain cleartext passwords including the shared file used by
     clients must be readable only by "owner."

     The data files required by a DCC can be in a single "home" directory,
     /usr/local/dcc.  Distinct DCC servers can run on a single computer, pro‐
     vided they use distinct UDP port numbers and home directories.  It is
     possible and convenient for the DCC clients using a server on the same
     computer to use the same home directory as the server.

     The DCC source distribution includes sample control files.	 They should
     be modified appropriately and then copied to the DCC home directory.
     Files that contain cleartext passwords must not be publicly readable.

     The DCC source includes "feature" m4 files to configure sendmail to use
     dccm(8) to check a DCC server about incoming mail.

     See also the INSTALL.html file.

   Client Installation
     Installing a DCC client starts with obtaining or compiling program bina‐
     ries for the client server data control tool, cdcc(8).  Installing the
     sendmail DCC interface, dccm(8), or dccproc(8), the general or
     procmail(1) interface is the main part of the client installation.	 Con‐
     necting the DCC to sendmail with dccm is most powerful, but requires
     administrative control of the system running sendmail.

     As noted above, cdcc and dccproc should be set-UID to a suitable UID.
     Root or 0 is thought to be safe for both, because they are careful to
     release privileges except when they need them to read or write files in
     the DCC home directory.  A DCC home directory, /usr/local/dcc should be
     created.  It must be owned and writable by the UID to which cdcc is set.

     After the DCC client programs have been obtained, contact the operator(s)
     of the chosen DCC server(s) to obtain each server's host name, port num‐
     ber, and a client-ID and corresponding password.  No client-IDs or pass‐
     words are needed touse DCC servers that allow anonymous clients.  Use the
     load or add commands of cdcc to create a map file in the DCC home direc‐
     tory.  It is usually necessary to create a client whitelist file of the
     format described above.  To accommodate users sharing a computer but not
     ideas about what is solicited bulk mail, the client whitelist file can be
     any valid path name and need not be in the DCC home directory.

     If dccm is chosen, arrange to start it with suitable arguments before
     sendmail is started.  See the homedir/dcc_conf file and the misc/rcDCC
     script in the DCC source.	The procmail DCCM interface, dccproc(8), can
     be run manually or by a procmailrc(5) rule.

   Server Installation
     The DCC server, dccd(8), also requires that the DCC home directory exist.
     It does not use the client shared or memory mapped file of server
     addresses, but it requires other files.  One is the /usr/local/dcc/ids
     file of client-IDs,  server-IDs, and corresponding passwords.  Another is
     a flod file of peers that send and receive floods of reports of checksums
     with large counts.	 Both files are described in dccd(8).

     The server daemon should be started when the system is rebooted, probably
     before sendmail.  See the misc/rcDCC and misc/start-dccd files in the DCC
     source.

     The database should be cleaned regularly with dbclean(8) such as by run‐
     ning the crontab job that is in the misc directory.

SEE ALSO
     cdcc(8), dbclean(8), dcc(8), dccd(8), dccifd(8), dccm(8), dccproc(8),
     dblist(8), dccsight(8), sendmail(8).

HISTORY
     Distributed Checksum Clearinghouses are based on an idea of Paul Vixie
     with code designed and written at Rhyolite Software starting in 2000.
     This document describes version 1.3.158.

				April 03, 2015
[top]

List of man pages available for DragonFly

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net