ccfirm1d man page on IRIX

Man page or keyword search:  
man Server   31559 pages
apropos Keyword Search (all sections)
Output format
IRIX logo
[printable version]



CFIRM1D(3S)							   CFIRM1D(3S)

NAME
     CFIRM1D, ZFIRM1D, SFIRM1D, DFIRM1D - Compute multiple 1D convolutions

SYNOPSIS
     Single precision complex

	  Fortran:
	       CALL CFIRM1D (x, incx, ldx, ix0, nx, nseq, h, inch, ih0, nh, y,
	       incy, ldy, iy0, ny, alpha, beta)

	  C/C++:
	       #include <scsl_fft.h>
	       void cfirm1d( scsl_complex *x, int incx, int ix0, int nx,
	       scsl_complex *h, int inch, int ih0, int nh, scsl_complex *y,
	       int incy, int iy0, int ny, scsl_complex *alpha, scsl_complex
	       *beta);

	  C++ STL:
	       #include <complex.h>
	       #include <scsl_fft.h>
	       void cfirm1d( complex<float> *x, int incx, int ix0, int nx,
	       complex<float> *h, int inch, int ih0, int nh, complex<float>
	       *y, int incy, int iy0, int ny, complex<float> *alpha,
	       complex<float> *beta)

     Double precision complex

	  Fortran:
	       CALL ZFIRM1D (x, incx, ldx, ix0, nx, nseq, h, inch, ih0, nh, y,
	       incy, ldy, iy0, ny, alpha, beta)

	  C/C++:
	       #include <scsl_fft.h>
	       void zfirm1d( scsl_zomplex *x, int incx, int ix0, int nx,
	       scsl_zomplex *h, int inch, int ih0, int nh, scsl_zomplex *y,
	       int incy, int iy0, int ny, scsl_zomplex *alpha, scsl_zomplex
	       *beta);

	  C++ STL:
	       #include <complex.h>
	       #include <scsl_fft.h>
	       void zfirm1d( complex<double> *x, int incx, int ix0, int nx,
	       complex<double> *h, int inch, int ih0, int nh, complex<double>
	       *y, int incy, int iy0, int ny, complex<double> *alpha,
	       complex<double> *beta);

     Single precision

	  Fortran:
	       CALL SFIRM1D (x, incx, ldx, ix0, nx, nseq, h, inch, ih0, nh, y,
	       incy, ldy, iy0, ny, alpha, beta)

									Page 1

CFIRM1D(3S)							   CFIRM1D(3S)

	  C/C++:
	       #include <scsl_fft.h>
	       void sfirm1d( float *x, int incx, int ix0, int nx, float *h,
	       int inch, int ih0, int nh, float *y, int incy, int iy0, int ny,
	       float alpha, float beta);

     Double precision

	  Fortran:
	       CALL DFIRM1D (x, incx, ldx, ix0, nx, nseq, h, inch, ih0, nh, y,
	       incy, ldy, iy0, ny, alpha, beta)

	  C/C++:
	       #include <scsl_fft.h>
	       void dfirm1d( double *x, int incx, int ix0, int nx, double *h,
	       int inch, int ih0, int nh, double *y, int incy, int iy0, int
	       ny, double alpha, double beta);

IMPLEMENTATION
     These routines are part of the SCSL Scientific Library and can be loaded
     using either the -lscs or the -lscs_mp option.  The -lscs_mp option
     directs the linker to use the multi-processor version of the library.

     When linking to SCSL with -lscs or -lscs_mp, the default integer size is
     4 bytes (32 bits). Another version of SCSL is available in which integers
     are 8 bytes (64 bits).  This version allows the user access to larger
     memory sizes and helps when porting legacy Cray codes.  It can be loaded
     by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
     only one of the two versions; 4-byte integer and 8-byte integer library
     calls cannot be mixed.

     The C and C++ prototypes shown above are appropriate for the 4-byte
     integer version of SCSL. When using the 8-byte integer version, the
     variables of type int become long long and the <scsl_fft_i8.h> header
     file should be included.

DESCRIPTION
     These routines compute the convolutions of the filter vector h with each
     column of the two-dimenional array x, producing the output two-
     dimensional array y:

	  y = beta * y + alpha * h * x

     Suppose h is a sequence of nh elements and X is a 2D matrix with nseq
     columns, and nx elements in each column, as follows:

     h = [ h(0), h(1), , h(nh - 1) ] ,

			     and

	   x(0, 0)     x(0, 1)	   x(0, 2)	x(0, nseq-1)
	   x(1, 0)     x(1, 1)	   x(1, 2)	x(1, nseq-1)

									Page 2

CFIRM1D(3S)							   CFIRM1D(3S)

     X =   x(2, 0)     x(2, 1)	   x(2, 2)	x(2, nseq-1)
		   ...	       ...	   ...	      ...  ...
	   x(nx-1, 0)  x(nx-1, 1)  x(nx-1, 2)	x(nx-1, nseq-1)

     Then each column of the output matrix:

	   y(0, 0)     y(0, 1)	   y(0, 2)	y(0, nseq-1)
	   y(1, 0)     y(1, 1)	   y(1, 2)	y(1, nseq-1)
     Y =   y(2, 0)     y(2, 1)	   y(2, 2)	y(2, nseq-1)
		   ...	       ...	   ...	      ...  ...
	   y(ny-1, 0)  y(ny-1, 1)  y(ny-1, 2)	y(ny-1, nseq-1)

     is obtained by convolving h with the corresponding column of so that:

	     MIN(i, nh-1)
     y(i,j)= Sum	  {h(k)*x(i-k,j)}
	     k = MAX(0, i-nx+1)

	     nh-1
     y(i,j)= Sum	  {h(k)*x(i-k,j)}
	     k=0
			0 <=i<nx, 0<=j<nseq

     That is:

	  y(0,j)=h(0)*x(0,j)
	  y(1,j)=h(0)*x(1,j) + h(1)*x(0,j)
	  y(2,j)=h(0)*x(2,j) + h(1)*x(1,j)+h(2)*x(0,j)

	  y(nh-1,j)=h(0)*x(nh-1,j) + h(1)*x(nh-2,j) + ... + h(nh-1)*x(0,j)
					   ...
	  y(k,j)=h(0)*x(k,j)+h(1)*x(k,j-1) + ... + h(nh-1)*x(k,j-nh+1)
					   ...
	  y(nx-1,j)=h(0)*x(nx-1,j) + h(1)*x(nx-2,j) + ... + h(nh-1)*x(nx-nh,j)
					   ...
	  y(nx+nh-3,j)=h(nh-2)*x(nx-1,j) + h(nh-1)*x(nx-2,j)
	  y(nx+nh-2,j)=h(nh-1)*x(nx-1,j)

     In the *FIRM1D routines, the number of terms in the each output column is
     specified by an argument, ny.  If ny < nh + nx - 1 the columns of y are
     truncated.	 If ny > nh + nx - 1 the terms beyond y(nh + nx - 2) are set
     to 0.

     Generally, the sequences x(:,j), h and y(:,j) represent signals sampled
     at equal time intervals, and the indexes of the vectors denote the sample
     times.  If the signals begin at the same time, we may, without loss of
     generality, set the initial time to 0, as in the formulas above.

									Page 3

CFIRM1D(3S)							   CFIRM1D(3S)

     The *FIRM1D routines, however, permit more generality than this. The
     signals may be time shifted from each other using input parameters
     specifiying the initial time sample for each signal. This can be useful
     in several situations. For example, if the input array has several
     leading zero values that one does not wish to store, ix0 may be set to
     the time sample corresponding to the first non-zero element in the input
     array, and earlier time samples are treated as 0. Another use is to limit
     the output to just the "fully engaged" terms of the convolution.

     As can be seen above, when nx>= nh, the convolution has ramp-up and
     ramp-down regions in which fewer than all nh filter values contribute to
     the output value. Setting iy0 to nh-1 causes the first value output to
     correspond to time sample nh-1, thus skipping the ramp-up region.
     Setting ny to nx-nh+1 then drops the ramp-down terms, limiting the output
     to just the fully engaged part.

     Note that, instead of 0, the initial time could just as easily have been
     labeled 1 or 10 or -78; the relevant point is that the first elements of
     each of the x, h and y arrays are defined to be the same time sample as
     long as ix0 = ih0 = iy0.

     See the NOTES section of this man page for information about the
     interpretation of the data types described in the following arguments.

     These routines have the following arguments:

     x	       Array of dimension (ldx, nseq). (input).
	       CFIRM1D: Single precision complex array.
	       ZFIRM1D: Double precision complex array.
	       SFIRM1D: Single precision array.
	       DFIRM1D: Double precision array.
	       Input sequences to be correlated with h.

     incx      Integer. (input)
	       Increment between two successive values of a sequence in x.
	       incx must not be 0.

     ldx       Integer. (input)
	       The number of rows in x as it was declared in the calling
	       program (the leading dimension of x).  ldx >= MAX(nx  *
	       incx,1).

     ix0       Integer. (input)
	       Time sample corresponding to the first element of each 1D
	       sequence of x.

     nx	       Integer. (input)
	       The number of elements in each sequence of x.  nx >= 0.

     nseq      Integer.	 (input)
	       The number of sequences to which the convolution will be
	       applied. nseq >= 0. If nseq = 0, the routine returns.

									Page 4

CFIRM1D(3S)							   CFIRM1D(3S)

     h	       Array of dimension nh. (input).
	       CFIRM1D: Single precision complex array.
	       ZFIRM1D: Double precision complex array.
	       SFIRM1D: Single precision array.
	       DFIRM1D: Double precision array.
	       Input sequence to be convoluted with x.

     inch      Integer.	 (input)
	       Increment between two successive values of h. inch must not be
	       0.

     ih0       Integer.	 (input)
	       Time sample corresponding to the first element of h.

     nh	       Integer.	 (input)
	       The number of elements in the sequence h.  nh >= 0. If nh = 0,
	       the routine returns.

     y	       Array dimensioned (ldy, nseq).  (output)
	       CFIRM1D: Single precision complex array.
	       ZFIRM1D: Double precision complex array.
	       SFIRM1D: Single precision array.
	       DFIRM1D: Double precision array.
	       Output of the FIR filter.  On entry, the array y must have been
	       initialized, except when beta is zero.  In that case, y need
	       not be initialized.  On exit, the result overwrites y.

     incy      Integer.	 (input)
	       Increment between two successive values of a sequence in y.
	       incy must not be 0.

     ldy       Integer.	 (input)
	       The number of rows in y as it was declared in the calling
	       program (the leading dimension of y). ldy >= MAX(ny * incy, 1).

     iy0       Integer.	 (input)
	       Time sample corresponding to the first element of each 1D
	       sequence of y.

     ny	       Integer.	 (input)
	       Number of elements in each sequence of y.  ny >= 0. If ny = 0,
	       the routine returns.

     alpha     Scale factor for the convolution.  (input).
	       CFIRM1D: Single precision complex.
	       ZFIRM1D: Double precision complex.
	       SFIRM1D: Single precision.
	       DFIRM1D: Double precision.
	       For C/C++, a pointer to this value is passed.

									Page 5

CFIRM1D(3S)							   CFIRM1D(3S)

     beta      Scale factor for the output y. (input)
	       CFIRM1D: Single precision complex.
	       ZFIRM1D: Double precision complex.
	       SFIRM1D: Single precision.
	       DFIRM1D: Double precision.
	       When beta is supplied as 0, y need not be set on input.	For
	       C/C++, a pointer to this value is passed.

NOTES
     The following data types are described in this documentation:

	  Term Used			Data type

     Fortran:

	  Array dimensioned 0..n-1	x(0:n-1)

	  Array of dimensions (m,n)	x(m,n)

	  Array of dimensions (m,n,p)	x(m,n,p)

	  Integer			INTEGER (INTEGER*8 for -lscs_i8[_mp])

	  Single precision		REAL

	  Double precision		DOUBLE PRECISION

	  Single precision complex	COMPLEX

	  Double precision complex	DOUBLE COMPLEX

     C/C++:

	  Array dimensioned 0..n-1	x[n]

	  Array of dimensions (m,n)	x[m*n] or x[n][m]

	  Array of dimensions (m,n,p)	x[m*n*p] or x[p][n][m]

	  Integer			int (long long for -lscs_i8[_mp])

	  Single precision		float

	  Double precision		double

	  Single precision complex	scsl_complex

	  Double precision complex	scsl_zomplex

     C++ STL:

									Page 6

CFIRM1D(3S)							   CFIRM1D(3S)

	  Array dimensioned 0..n-1	x[n]

	  Array of dimensions (m,n)	x[m*n] or x[n][m]

	  Array of dimensions (m,n,p)	x[m*n*p] or x[p][n][m]

	  Integer			int (long long for -lscs_i8[_mp])

	  Single precision		float

	  Double precision		double

	  Single precision complex	complex<float>

	  Double precision complex	complex<double>

CAUTIONS
     The arrays x, h, and y must be non-overlapping.

EXAMPLES
     The following example computes the convolution of 5 4-sample sequences x
     with a filter h containing 3 samples:

     Fortran:

	   REAL X(0:3,0:4), H(0:2), Y(0:5,0:4)
	   REAL ALPHA, BETA
	   ALPHA = 1.0
	   BETA	 = 0.0

	   DO J = 0, 4
	      X(0,J) = J + 1.0
		DO I = 1, 3
		   X(I,J) = -1.0 - j
		ENDDO
	   ENDDO
	   DO I = 0, 2
	     H(I) = 1.0/(I+1)
	   ENDDO
	   CALL SFIRM1D(X(0,0), 1, 4, 0, 4, 5, H(0), 1, 0, 3,
	  &		Y(0,0), 1, 6, 0, 6, ALPHA, BETA)

     C/C++:

	  #include <scsl_fft.h>
	  float x[5][4], h[3], y[5][6];
	  float alpha = 1.0f;
	  float beat  = 0.0f;
	  int i, j;

	  for (j=0; j<5; j++) {

									Page 7

CFIRM1D(3S)							   CFIRM1D(3S)

	    x[j][0] = j + 1.0f;
	       for (i=1; i<4; i++) {
		   x[j][i] = -1.0f - j;
	       }
	  }
	  for (i=0; i<3; i++) {
	    h[i] = 1.0f/(i+1);
	  }
	  sfirm1d((float *) x, 1, 4, 0, 4, 5, h, 1, 0, 3,
		  (float *) y, 1, 6, 0, 6, alpha, beta);

     The output is

		      Y(:,0)   Y(:,1)	Y(:,2)	 Y(:,3)	  Y(:,4)
	  Y(0,:)      1.0000   2.0000	3.0000	 4.0000	  5.0000
	  Y(1,:)     -0.5000  -1.0000  -1.5000	-2.0000	 -2.5000
	  Y(2,:)     -1.1667  -2.3333  -3.5000	-4.6667	 -5.8333
	  Y(3,:)     -1.8333  -3.6667  -5.5000	-7.3333	 -9.1667
	  Y(4,:)     -0.8333  -1.6667  -2.5000	-3.3333	 -4.1667
	  Y(5,:)     -0.3333  -0.6667  -1.0000	-1.3333	 -1.6667

     Changing the values for ix0, ih0 and iy0 produces the following shifts in
     the output:

	  ix0 = +1    Y(:,0)   Y(:,1)	Y(:,2)	 Y(:,3)	  Y(:,4)
	  Y(0,:)      0.0000   0.0000	0.0000	 0.0000	  0.0000
	  Y(1,:)      1.0000   2.0000	3.0000	 4.0000	  5.0000
	  Y(2,:)     -0.5000  -1.0000  -1.5000	-2.0000	 -2.5000
	  Y(3,:)     -1.1667  -2.3333  -3.5000	-4.6667	 -5.8333
	  Y(4,:)     -1.8333  -3.6667  -5.5000	-7.3333	 -9.1667
	  Y(5,:)     -0.8333  -1.6667  -2.5000	-3.3333	 -4.1667

	  ih0 = -1    Y(:,0)   Y(:,1)	Y(:,2)	 Y(:,3)	  Y(:,4)
	  Y(0,:)     -0.5000  -1.0000  -1.5000	-2.0000	 -2.5000
	  Y(1,:)     -1.1667  -2.3333  -3.5000	-4.6667	 -5.8333
	  Y(2,:)     -1.8333  -3.6667  -5.5000	-7.3333	 -9.1667
	  Y(3,:)     -0.8333  -1.6667  -2.5000	-3.3333	 -4.1667
	  Y(4,:)     -0.3333  -0.6667  -1.0000	-1.3333	 -1.6667
	  Y(5,:)      0.0000   0.0000	0.0000	 0.0000	  0.0000

	  iy0 = -1    Y(:,0)   Y(:,1)	Y(:,2)	 Y(:,3)	  Y(:,4)
	  Y(0,:)      0.0000   0.0000	0.0000	 0.0000	  0.0000
	  Y(1,:)      1.0000   2.0000	3.0000	 4.0000	  5.0000
	  Y(2,:)     -0.5000  -1.0000  -1.5000	-2.0000	 -2.5000
	  Y(3,:)     -1.1667  -2.3333  -3.5000	-4.6667	 -5.8333
	  Y(4,:)     -1.8333  -3.6667  -5.5000	-7.3333	 -9.1667
	  Y(5,:)     -0.8333  -1.6667  -2.5000	-3.3333	 -4.1667

									Page 8

CFIRM1D(3S)							   CFIRM1D(3S)

SEE ALSO
     CCOR1D(3S), INTRO_FFT(3S), INTRO_SCSL(3S

									Page 9

[top]

List of man pages available for IRIX

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net