EVP_CIPHER_block_size man page on IRIX

Man page or keyword search:  
man Server   31559 pages
apropos Keyword Search (all sections)
Output format
IRIX logo
[printable version]

     /xlv3/openssl/0.9.7e-sgipl1/work/0.9.7e-sgipl1/openssl-
     0.9.7e/doc/crypto

     Page 1					    (printed 10/20/05)

     EVP_EncryptInit(3)	   18/Oct/2002 (0.9.7e)	    EVP_EncryptInit(3)

     NAME
	  EVP_CIPHER_CTX_init, EVP_EncryptInit_ex, EVP_EncryptUpdate,
	  EVP_EncryptFinal_ex, EVP_DecryptInit_ex, EVP_DecryptUpdate,
	  EVP_DecryptFinal_ex, EVP_CipherInit_ex, EVP_CipherUpdate,
	  EVP_CipherFinal_ex, EVP_CIPHER_CTX_set_key_length,
	  EVP_CIPHER_CTX_ctrl, EVP_CIPHER_CTX_cleanup,
	  EVP_EncryptInit, EVP_EncryptFinal, EVP_DecryptInit,
	  EVP_DecryptFinal, EVP_CipherInit, EVP_CipherFinal,
	  EVP_get_cipherbyname, EVP_get_cipherbynid,
	  EVP_get_cipherbyobj, EVP_CIPHER_nid, EVP_CIPHER_block_size,
	  EVP_CIPHER_key_length, EVP_CIPHER_iv_length,
	  EVP_CIPHER_flags, EVP_CIPHER_mode, EVP_CIPHER_type,
	  EVP_CIPHER_CTX_cipher, EVP_CIPHER_CTX_nid,
	  EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length,
	  EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data,
	  EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type,
	  EVP_CIPHER_CTX_flags, EVP_CIPHER_CTX_mode,
	  EVP_CIPHER_param_to_asn1, EVP_CIPHER_asn1_to_param,
	  EVP_CIPHER_CTX_set_padding - EVP cipher routines

     SYNOPSIS
	   #include <openssl/evp.h>

	   int EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *a);

	   int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
		   ENGINE *impl, unsigned char *key, unsigned char *iv);
	   int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
		   int *outl, unsigned char *in, int inl);
	   int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out,
		   int *outl);

	   int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
		   ENGINE *impl, unsigned char *key, unsigned char *iv);
	   int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
		   int *outl, unsigned char *in, int inl);
	   int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
		   int *outl);

	   int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
		   ENGINE *impl, unsigned char *key, unsigned char *iv, int enc);
	   int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
		   int *outl, unsigned char *in, int inl);
	   int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
		   int *outl);

	   int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
		   unsigned char *key, unsigned char *iv);
	   int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
		   int *outl);

     Page 1					    (printed 10/20/05)

     EVP_EncryptInit(3)	   18/Oct/2002 (0.9.7e)	    EVP_EncryptInit(3)

	   int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
		   unsigned char *key, unsigned char *iv);
	   int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
		   int *outl);

	   int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
		   unsigned char *key, unsigned char *iv, int enc);
	   int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
		   int *outl);

	   int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding);
	   int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
	   int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
	   int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *a);

	   const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
	   #define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a))
	   #define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a))

	   #define EVP_CIPHER_nid(e)		  ((e)->nid)
	   #define EVP_CIPHER_block_size(e)	  ((e)->block_size)
	   #define EVP_CIPHER_key_length(e)	  ((e)->key_len)
	   #define EVP_CIPHER_iv_length(e)		  ((e)->iv_len)
	   #define EVP_CIPHER_flags(e)		  ((e)->flags)
	   #define EVP_CIPHER_mode(e)		  ((e)->flags) & EVP_CIPH_MODE)
	   int EVP_CIPHER_type(const EVP_CIPHER *ctx);

	   #define EVP_CIPHER_CTX_cipher(e)	  ((e)->cipher)
	   #define EVP_CIPHER_CTX_nid(e)	  ((e)->cipher->nid)
	   #define EVP_CIPHER_CTX_block_size(e)	  ((e)->cipher->block_size)
	   #define EVP_CIPHER_CTX_key_length(e)	  ((e)->key_len)
	   #define EVP_CIPHER_CTX_iv_length(e)	  ((e)->cipher->iv_len)
	   #define EVP_CIPHER_CTX_get_app_data(e) ((e)->app_data)
	   #define EVP_CIPHER_CTX_set_app_data(e,d) ((e)->app_data=(char *)(d))
	   #define EVP_CIPHER_CTX_type(c)	  EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c))
	   #define EVP_CIPHER_CTX_flags(e)		  ((e)->cipher->flags)
	   #define EVP_CIPHER_CTX_mode(e)	  ((e)->cipher->flags & EVP_CIPH_MODE)

	   int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
	   int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);

     DESCRIPTION
	  The EVP cipher routines are a high level interface to
	  certain symmetric ciphers.

	  EVP_CIPHER_CTX_init() initializes cipher contex ctx.

	  EVP_EncryptInit_ex() sets up cipher context ctx for
	  encryption with cipher type from ENGINE impl. ctx must be
	  initialized before calling this function. type is normally
	  supplied by a function such as EVP_des_cbc(). If impl is

     Page 2					    (printed 10/20/05)

     EVP_EncryptInit(3)	   18/Oct/2002 (0.9.7e)	    EVP_EncryptInit(3)

	  NULL then the default implementation is used. key is the
	  symmetric key to use and iv is the IV to use (if necessary),
	  the actual number of bytes used for the key and IV depends
	  on the cipher. It is possible to set all parameters to NULL
	  except type in an initial call and supply the remaining
	  parameters in subsequent calls, all of which have type set
	  to NULL. This is done when the default cipher parameters are
	  not appropriate.

	  EVP_EncryptUpdate() encrypts inl bytes from the buffer in
	  and writes the encrypted version to out. This function can
	  be called multiple times to encrypt successive blocks of
	  data. The amount of data written depends on the block
	  alignment of the encrypted data:  as a result the amount of
	  data written may be anything from zero bytes to (inl +
	  cipher_block_size - 1) so outl should contain sufficient
	  room. The actual number of bytes written is placed in outl.

	  If padding is enabled (the default) then
	  EVP_EncryptFinal_ex() encrypts the "final" data, that is any
	  data that remains in a partial block.	 It uses standard
	  block padding (aka PKCS padding). The encrypted final data
	  is written to out which should have sufficient space for one
	  cipher block. The number of bytes written is placed in outl.
	  After this function is called the encryption operation is
	  finished and no further calls to EVP_EncryptUpdate() should
	  be made.

	  If padding is disabled then EVP_EncryptFinal_ex() will not
	  encrypt any more data and it will return an error if any
	  data remains in a partial block:  that is if the total data
	  length is not a multiple of the block size.

	  EVP_DecryptInit_ex(), EVP_DecryptUpdate() and
	  EVP_DecryptFinal_ex() are the corresponding decryption
	  operations. EVP_DecryptFinal() will return an error code if
	  padding is enabled and the final block is not correctly
	  formatted. The parameters and restrictions are identical to
	  the encryption operations except that if padding is enabled
	  the decrypted data buffer out passed to EVP_DecryptUpdate()
	  should have sufficient room for (inl + cipher_block_size)
	  bytes unless the cipher block size is 1 in which case inl
	  bytes is sufficient.

	  EVP_CipherInit_ex(), EVP_CipherUpdate() and
	  EVP_CipherFinal_ex() are functions that can be used for
	  decryption or encryption. The operation performed depends on
	  the value of the enc parameter. It should be set to 1 for
	  encryption, 0 for decryption and -1 to leave the value
	  unchanged (the actual value of 'enc' being supplied in a
	  previous call).

     Page 3					    (printed 10/20/05)

     EVP_EncryptInit(3)	   18/Oct/2002 (0.9.7e)	    EVP_EncryptInit(3)

	  EVP_CIPHER_CTX_cleanup() clears all information from a
	  cipher context and free up any allocated memory associate
	  with it. It should be called after all operations using a
	  cipher are complete so sensitive information does not remain
	  in memory.

	  EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit()
	  behave in a similar way to EVP_EncryptInit_ex(),
	  EVP_DecryptInit_ex and EVP_CipherInit_ex() except the ctx
	  paramter does not need to be initialized and they always use
	  the default cipher implementation.

	  EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal()
	  behave in a similar way to EVP_EncryptFinal_ex(),
	  EVP_DecryptFinal_ex() and EVP_CipherFinal_ex() except ctx is
	  automatically cleaned up after the call.

	  EVP_get_cipherbyname(), EVP_get_cipherbynid() and
	  EVP_get_cipherbyobj() return an EVP_CIPHER structure when
	  passed a cipher name, a NID or an ASN1_OBJECT structure.

	  EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return the NID of
	  a cipher when passed an EVP_CIPHER or EVP_CIPHER_CTX
	  structure.  The actual NID value is an internal value which
	  may not have a corresponding OBJECT IDENTIFIER.

	  EVP_CIPHER_CTX_set_padding() enables or disables padding. By
	  default encryption operations are padded using standard
	  block padding and the padding is checked and removed when
	  decrypting. If the pad parameter is zero then no padding is
	  performed, the total amount of data encrypted or decrypted
	  must then be a multiple of the block size or an error will
	  occur.

	  EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length()
	  return the key length of a cipher when passed an EVP_CIPHER
	  or EVP_CIPHER_CTX structure. The constant EVP_MAX_KEY_LENGTH
	  is the maximum key length for all ciphers. Note: although
	  EVP_CIPHER_key_length() is fixed for a given cipher, the
	  value of EVP_CIPHER_CTX_key_length() may be different for
	  variable key length ciphers.

	  EVP_CIPHER_CTX_set_key_length() sets the key length of the
	  cipher ctx.  If the cipher is a fixed length cipher then
	  attempting to set the key length to any value other than the
	  fixed value is an error.

	  EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return
	  the IV length of a cipher when passed an EVP_CIPHER or
	  EVP_CIPHER_CTX.  It will return zero if the cipher does not
	  use an IV.  The constant EVP_MAX_IV_LENGTH is the maximum IV
	  length for all ciphers.

     Page 4					    (printed 10/20/05)

     EVP_EncryptInit(3)	   18/Oct/2002 (0.9.7e)	    EVP_EncryptInit(3)

	  EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size()
	  return the block size of a cipher when passed an EVP_CIPHER
	  or EVP_CIPHER_CTX structure. The constant EVP_MAX_IV_LENGTH
	  is also the maximum block length for all ciphers.

	  EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type
	  of the passed cipher or context. This "type" is the actual
	  NID of the cipher OBJECT IDENTIFIER as such it ignores the
	  cipher parameters and 40 bit RC2 and 128 bit RC2 have the
	  same NID. If the cipher does not have an object identifier
	  or does not have ASN1 support this function will return
	  NID_undef.

	  EVP_CIPHER_CTX_cipher() returns the EVP_CIPHER structure
	  when passed an EVP_CIPHER_CTX structure.

	  EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block
	  cipher mode:	EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE,
	  EVP_CIPH_CFB_MODE or EVP_CIPH_OFB_MODE. If the cipher is a
	  stream cipher then EVP_CIPH_STREAM_CIPHER is returned.

	  EVP_CIPHER_param_to_asn1() sets the AlgorithmIdentifier
	  "parameter" based on the passed cipher. This will typically
	  include any parameters and an IV. The cipher IV (if any)
	  must be set when this call is made. This call should be made
	  before the cipher is actually "used" (before any
	  EVP_EncryptUpdate(), EVP_DecryptUpdate() calls for example).
	  This function may fail if the cipher does not have any ASN1
	  support.

	  EVP_CIPHER_asn1_to_param() sets the cipher parameters based
	  on an ASN1 AlgorithmIdentifier "parameter". The precise
	  effect depends on the cipher In the case of RC2, for
	  example, it will set the IV and effective key length.	 This
	  function should be called after the base cipher type is set
	  but before the key is set. For example EVP_CipherInit() will
	  be called with the IV and key set to NULL,
	  EVP_CIPHER_asn1_to_param() will be called and finally
	  EVP_CipherInit() again with all parameters except the key
	  set to NULL. It is possible for this function to fail if the
	  cipher does not have any ASN1 support or the parameters
	  cannot be set (for example the RC2 effective key length is
	  not supported.

	  EVP_CIPHER_CTX_ctrl() allows various cipher specific
	  parameters to be determined and set. Currently only the RC2
	  effective key length and the number of rounds of RC5 can be
	  set.

     RETURN VALUES
	  EVP_CIPHER_CTX_init, EVP_EncryptInit_ex(),
	  EVP_EncryptUpdate() and EVP_EncryptFinal_ex() return 1 for

     Page 5					    (printed 10/20/05)

     EVP_EncryptInit(3)	   18/Oct/2002 (0.9.7e)	    EVP_EncryptInit(3)

	  success and 0 for failure.

	  EVP_DecryptInit_ex() and EVP_DecryptUpdate() return 1 for
	  success and 0 for failure.  EVP_DecryptFinal_ex() returns 0
	  if the decrypt failed or 1 for success.

	  EVP_CipherInit_ex() and EVP_CipherUpdate() return 1 for
	  success and 0 for failure.  EVP_CipherFinal_ex() returns 0
	  for a decryption failure or 1 for success.

	  EVP_CIPHER_CTX_cleanup() returns 1 for success and 0 for
	  failure.

	  EVP_get_cipherbyname(), EVP_get_cipherbynid() and
	  EVP_get_cipherbyobj() return an EVP_CIPHER structure or NULL
	  on error.

	  EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return a NID.

	  EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size()
	  return the block size.

	  EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length()
	  return the key length.

	  EVP_CIPHER_CTX_set_padding() always returns 1.

	  EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return
	  the IV length or zero if the cipher does not use an IV.

	  EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the NID
	  of the cipher's OBJECT IDENTIFIER or NID_undef if it has no
	  defined OBJECT IDENTIFIER.

	  EVP_CIPHER_CTX_cipher() returns an EVP_CIPHER structure.

	  EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param()
	  return 1 for success or zero for failure.

     CIPHER LISTING
	  All algorithms have a fixed key length unless otherwise
	  stated.

	  EVP_enc_null()
	      Null cipher: does nothing.

     EVP_des_ofb(void)
	  EVP_des_cbc(void), EVP_des_ecb(void), EVP_des_cfb(void),
	      DES in CBC, ECB, CFB and OFB modes respectively.

     EVP_des_ede_cfb(void)
	  EVP_des_ede_cbc(void), EVP_des_ede(), EVP_des_ede_ofb(void),

     Page 6					    (printed 10/20/05)

     EVP_EncryptInit(3)	   18/Oct/2002 (0.9.7e)	    EVP_EncryptInit(3)

	      Two key triple DES in CBC, ECB, CFB and OFB modes
	      respectively.

     EVP_des_ede3_cfb(void)
	  EVP_des_ede3_cbc(void), EVP_des_ede3(), EVP_des_ede3_ofb(void),
	      Three key triple DES in CBC, ECB, CFB and OFB modes
	      respectively.

	  EVP_desx_cbc(void)
	      DESX algorithm in CBC mode.

	  EVP_rc4(void)
	      RC4 stream cipher. This is a variable key length cipher
	      with default key length 128 bits.

	  EVP_rc4_40(void)
	      RC4 stream cipher with 40 bit key length. This is
	      obsolete and new code should use EVP_rc4() and the
	      EVP_CIPHER_CTX_set_key_length() function.

     EVP_idea_ofb(void), EVP_idea_cbc(void)
	  EVP_idea_cbc() EVP_idea_ecb(void), EVP_idea_cfb(void),
	      IDEA encryption algorithm in CBC, ECB, CFB and OFB modes
	      respectively.

     EVP_rc2_ofb(void)
	  EVP_rc2_cbc(void), EVP_rc2_ecb(void), EVP_rc2_cfb(void),
	      RC2 encryption algorithm in CBC, ECB, CFB and OFB modes
	      respectively. This is a variable key length cipher with
	      an additional parameter called "effective key bits" or
	      "effective key length".  By default both are set to 128
	      bits.

	  EVP_rc2_40_cbc(void), EVP_rc2_64_cbc(void)
	      RC2 algorithm in CBC mode with a default key length and
	      effective key length of 40 and 64 bits.  These are
	      obsolete and new code should use EVP_rc2_cbc(),
	      EVP_CIPHER_CTX_set_key_length() and
	      EVP_CIPHER_CTX_ctrl() to set the key length and
	      effective key length.

     EVP_bf_ofb(void);
	  EVP_bf_cbc(void), EVP_bf_ecb(void), EVP_bf_cfb(void),
	      Blowfish encryption algorithm in CBC, ECB, CFB and OFB
	      modes respectively. This is a variable key length
	      cipher.

     EVP_cast5_ofb(void)
	  EVP_cast5_cbc(void), EVP_cast5_ecb(void), EVP_cast5_cfb(void),
	      CAST encryption algorithm in CBC, ECB, CFB and OFB modes
	      respectively. This is a variable key length cipher.

     Page 7					    (printed 10/20/05)

     EVP_EncryptInit(3)	   18/Oct/2002 (0.9.7e)	    EVP_EncryptInit(3)

     EVP_rc5_32_12_16_cfb(void), EVP_rc5_32_12_16_ofb(void)
	  EVP_rc5_32_12_16_cbc(void), EVP_rc5_32_12_16_ecb(void),
	      RC5 encryption algorithm in CBC, ECB, CFB and OFB modes
	      respectively. This is a variable key length cipher with
	      an additional "number of rounds" parameter. By default
	      the key length is set to 128 bits and 12 rounds.

     NOTES
	  Where possible the EVP interface to symmetric ciphers should
	  be used in preference to the low level interfaces. This is
	  because the code then becomes transparent to the cipher used
	  and much more flexible.

	  PKCS padding works by adding n padding bytes of value n to
	  make the total length of the encrypted data a multiple of
	  the block size. Padding is always added so if the data is
	  already a multiple of the block size n will equal the block
	  size. For example if the block size is 8 and 11 bytes are to
	  be encrypted then 5 padding bytes of value 5 will be added.

	  When decrypting the final block is checked to see if it has
	  the correct form.

	  Although the decryption operation can produce an error if
	  padding is enabled, it is not a strong test that the input
	  data or key is correct. A random block has better than 1 in
	  256 chance of being of the correct format and problems with
	  the input data earlier on will not produce a final decrypt
	  error.

	  If padding is disabled then the decryption operation will
	  always succeed if the total amount of data decrypted is a
	  multiple of the block size.

	  The functions EVP_EncryptInit(), EVP_EncryptFinal(),
	  EVP_DecryptInit(), EVP_CipherInit() and EVP_CipherFinal()
	  are obsolete but are retained for compatibility with
	  existing code. New code should use EVP_EncryptInit_ex(),
	  EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(),
	  EVP_DecryptFinal_ex(), EVP_CipherInit_ex() and
	  EVP_CipherFinal_ex() because they can reuse an existing
	  context without allocating and freeing it up on each call.

     BUGS
	  For RC5 the number of rounds can currently only be set to 8,
	  12 or 16. This is a limitation of the current RC5 code
	  rather than the EVP interface.

	  EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the
	  internal ciphers with default key lengths. If custom ciphers
	  exceed these values the results are unpredictable. This is
	  because it has become standard practice to define a generic

     Page 8					    (printed 10/20/05)

     EVP_EncryptInit(3)	   18/Oct/2002 (0.9.7e)	    EVP_EncryptInit(3)

	  key as a fixed unsigned char array containing
	  EVP_MAX_KEY_LENGTH bytes.

	  The ASN1 code is incomplete (and sometimes inaccurate) it
	  has only been tested for certain common S/MIME ciphers (RC2,
	  DES, triple DES) in CBC mode.

     EXAMPLES
	  Get the number of rounds used in RC5:

	   int nrounds;
	   EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC5_ROUNDS, 0, &nrounds);

	  Get the RC2 effective key length:

	   int key_bits;
	   EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC2_KEY_BITS, 0, &key_bits);

	  Set the number of rounds used in RC5:

	   int nrounds;
	   EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC5_ROUNDS, nrounds, NULL);

	  Set the effective key length used in RC2:

	   int key_bits;
	   EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC2_KEY_BITS, key_bits, NULL);

	  Encrypt a string using blowfish:

	   int do_crypt(char *outfile)
		  {
		  unsigned char outbuf[1024];
		  int outlen, tmplen;
		  /* Bogus key and IV: we'd normally set these from
		   * another source.
		   */
		  unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
		  unsigned char iv[] = {1,2,3,4,5,6,7,8};
		  char intext[] = "Some Crypto Text";
		  EVP_CIPHER_CTX ctx;
		  FILE *out;
		  EVP_CIPHER_CTX_init(&ctx);
		  EVP_EncryptInit_ex(&ctx, EVP_bf_cbc(), NULL, key, iv);

     Page 9					    (printed 10/20/05)

     EVP_EncryptInit(3)	   18/Oct/2002 (0.9.7e)	    EVP_EncryptInit(3)

		  if(!EVP_EncryptUpdate(&ctx, outbuf, &outlen, intext, strlen(intext)))
			  {
			  /* Error */
			  return 0;
			  }
		  /* Buffer passed to EVP_EncryptFinal() must be after data just
		   * encrypted to avoid overwriting it.
		   */
		  if(!EVP_EncryptFinal_ex(&ctx, outbuf + outlen, &tmplen))
			  {
			  /* Error */
			  return 0;
			  }
		  outlen += tmplen;
		  EVP_CIPHER_CTX_cleanup(&ctx);
		  /* Need binary mode for fopen because encrypted data is
		   * binary data. Also cannot use strlen() on it because
		   * it wont be null terminated and may contain embedded
		   * nulls.
		   */
		  out = fopen(outfile, "wb");
		  fwrite(outbuf, 1, outlen, out);
		  fclose(out);
		  return 1;
		  }

	  The ciphertext from the above example can be decrypted using
	  the openssl utility with the command line:

	   openssl bf -in cipher.bin -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708 -d

	  General encryption, decryption function example using FILE
	  I/O and RC2 with an 80 bit key:

	   int do_crypt(FILE *in, FILE *out, int do_encrypt)
		  {
		  /* Allow enough space in output buffer for additional block */
		  inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
		  int inlen, outlen;
		  /* Bogus key and IV: we'd normally set these from
		   * another source.
		   */
		  unsigned char key[] = "0123456789";
		  unsigned char iv[] = "12345678";
		  /* Don't set key or IV because we will modify the parameters */
		  EVP_CIPHER_CTX_init(&ctx);
		  EVP_CipherInit_ex(&ctx, EVP_rc2(), NULL, NULL, NULL, do_encrypt);
		  EVP_CIPHER_CTX_set_key_length(&ctx, 10);
		  /* We finished modifying parameters so now we can set key and IV */
		  EVP_CipherInit_ex(&ctx, NULL, NULL, key, iv, do_encrypt);

     Page 10					    (printed 10/20/05)

     EVP_EncryptInit(3)	   18/Oct/2002 (0.9.7e)	    EVP_EncryptInit(3)

		  for(;;)
			  {
			  inlen = fread(inbuf, 1, 1024, in);
			  if(inlen <= 0) break;
			  if(!EVP_CipherUpdate(&ctx, outbuf, &outlen, inbuf, inlen))
				  {
				  /* Error */
				  return 0;
				  }
			  fwrite(outbuf, 1, outlen, out);
			  }
		  if(!EVP_CipherFinal_ex(&ctx, outbuf, &outlen))
			  {
			  /* Error */
			  return 0;
			  }
		  fwrite(outbuf, 1, outlen, out);

		  EVP_CIPHER_CTX_cleanup(&ctx);
		  return 1;
		  }

     SEE ALSO
	  evp(3)

     HISTORY
	  EVP_CIPHER_CTX_init(), EVP_EncryptInit_ex(),
	  EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(),
	  EVP_DecryptFinal_ex(), EVP_CipherInit_ex(),
	  EVP_CipherFinal_ex() and EVP_CIPHER_CTX_set_padding()
	  appeared in OpenSSL 0.9.7.

	  , EVP_CIPHER_iv_length, EVP_CIPHER_flags, EVP_CIPHER_mode,
	  EVP_CIPHER_type, EVP_CIPHER_CTX_cipher, EVP_CIPHER_CTX_nid,
	  EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length,
	  EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data,
	  EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type,
	  EVP_CIPHER_CTX_flags, EVP_CIPHER_CTX_mode,
	  EVP_CIPHER_param_to_asn1, EVP_CIPHER_asn1_to_param,
	  EVP_CIPHER_CTX_set_padding - EVP cipher routines"

     Page 11					    (printed 10/20/05)

     EVP_EncryptInit(3)	   18/Oct/2002 (0.9.7e)	    EVP_EncryptInit(3)

     Page 12					    (printed 10/20/05)

[top]

List of man pages available for IRIX

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net