Bio::Structure::SecStr::DSSP::Res man page on Pidora

Man page or keyword search:  
man Server   31170 pages
apropos Keyword Search (all sections)
Output format
Pidora logo
[printable version]

Bio::Structure::SecStrUserSContributed PerBio::Structure::SecStr::DSSP::Res(3)

NAME
       Bio::Structure::SecStr::DSSP::Res - Module for parsing/accessing dssp
       output

SYNOPSIS
	 my $dssp_obj = Bio::Structure::SecStr::DSSP::Res->new('-file'=>'filename.dssp');

	 # or

	 my $dssp_obj = Bio::Structure::SecStr::DSSP::Res->new('-fh'=>\*STDOUT);

	 # get DSSP defined Secondary Structure for residue 20
	 $sec_str = $dssp_obj->resSecStr( 20 );

	 # get dssp defined sec. structure summary for PDB residue  # 10 of chain A

	 $sec_str = $dssp_obj->resSecStrSum( '10:A' );

DESCRIPTION
       DSSP::Res is a module for objectifying DSSP output.  Methods are then
       available for extracting all the information within the output file and
       convenient subsets of it.  The principal purpose of DSSP is to
       determine secondary structural elements of a given structure.

	   ( Dictionary of protein secondary structure: pattern recognition
	     of hydrogen-bonded and geometrical features.
	     Biopolymers. 1983 Dec;22(12):2577-637. )

       The DSSP program is available from:
	 http://www.cmbi.kun.nl/swift/dssp

       This information is available on a per residue basis ( see resSecStr
       and resSecStrSum methods ) or on a per chain basis ( see secBounds
       method ).

       resSecStr() & secBounds() return one of the following:
	   'H' = alpha helix
	   'B' = residue in isolated beta-bridge
	   'E' = extended strand, participates in beta ladder
	   'G' = 3-helix (3/10 helix)
	   'I' = 5 helix (pi helix)
	   'T' = hydrogen bonded turn
	   'S' = bend
	   ''  = no assignment

       A more general classification is returned using the resSecStrSum()
       method.	The purpose of this is to have a method for DSSP and STRIDE
       derived output whose range is the same.	Its output is one of the
       following:

	   'H' = helix	       ( => 'H', 'G', or 'I' from above )
	   'B' = beta	       ( => 'B' or 'E' from above )
	   'T' = turn	       ( => 'T' or 'S' from above )
	   ' ' = no assignment ( => ' ' from above )

       The methods are roughly divided into 3 sections: 1.  Global features of
       this structure (PDB ID, total surface area,
	   etc.).  These methods do not require an argument.  2.  Residue
       specific features ( amino acid, secondary structure,
	   solvent exposed surface area, etc. ).  These methods do require an
	   arguement.  The argument is supposed to uniquely identify a
	   residue described within the structure.  It can be of any of the
	   following forms:
	   ('#A:B') or ( #, 'A', 'B' )
	     || |
	     || - Chain ID (blank for single chain)
	     |--- Insertion code for this residue.  Blank for most residues.
	     |--- Numeric portion of residue ID.

	   (#)
	    |
	    --- Numeric portion of residue ID.	If there is only one chain and
		it has no ID AND there is no residue with an insertion code at this
		number, then this can uniquely specify a residue.

	   ('#:C') or ( #, 'C' )
	     | |
	     | -Chain ID
	     ---Numeric portion of residue ID.

	 If a residue is incompletely specified then the first residue that
	 fits the arguments is returned.  For example, if 19 is the argument
	 and there are three chains, A, B, and C with a residue whose number
	 is 19, then 19:A will be returned (assuming its listed first).

	 Since neither DSSP nor STRIDE correctly handle alt-loc codes, they
	 are not supported by these modules.

       3.  Value-added methods.	 Return values are not verbatem strings
	   parsed from DSSP or STRIDE output.

FEEDBACK
   Mailing Lists
       User feedback is an integral part of the evolution of this and other
       Bioperl modules. Send your comments and suggestions preferably to one
       of the Bioperl mailing lists.  Your participation is much appreciated.

	 bioperl-l@bioperl.org			- General discussion
	 http://bioperl.org/wiki/Mailing_lists	- About the mailing lists

   Support
       Please direct usage questions or support issues to the mailing list:

       bioperl-l@bioperl.org

       rather than to the module maintainer directly. Many experienced and
       reponsive experts will be able look at the problem and quickly address
       it. Please include a thorough description of the problem with code and
       data examples if at all possible.

   Reporting Bugs
       Report bugs to the Bioperl bug tracking system to help us keep track
       the bugs and their resolution.  Bug reports can be submitted via the
       web:

	 http://bugzilla.open-bio.org/

AUTHOR - Ed Green
       Email ed@compbio.berkeley.edu

APPENDIX
       The rest of the documentation details each method.  Internal methods
       are preceded with a _

CONSTRUCTOR
   new
	Title	      : new
	Usage	      : makes new object of this class
	Function      : Constructor
	Example	      : $dssp_obj = Bio::DSSP:Res->new( filename or FILEHANDLE )
	Returns	      : object (ref)
	Args	      : filename ( must be proper DSSP output file )

ACCESSORS
   totSurfArea
	Title	      : totSurfArea
	Usage	      : returns total accessible surface area in square Ang.
	Function      :
	Example	      : $surArea = $dssp_obj->totSurfArea();
	Returns	      : scalar
	Args	      : none

   numResidues
	Title	      : numResidues
	Usage	      : returns the total number of residues in all chains or
			just the specified chain if a chain is specified
	Function      :
	Example	      : $num_res = $dssp_obj->numResidues();
	Returns	      : scalar int
	Args	      : none

   pdbID
	Title	      : pdbID
	Usage	      : returns pdb identifier ( 1FJM, e.g.)
	Function      :
	Example	      : $pdb_id = $dssp_obj->pdbID();
	Returns	      : scalar string
	Args	      : none

   pdbAuthor
	Title	      : pdbAuthor
	Usage	      : returns author field
	Function      :
	Example	      : $auth = $dssp_obj->pdbAuthor()
	Returns	      : scalar string
	Args	      : none

   pdbCompound
	Title	      : pdbCompound
	Usage	      : returns pdbCompound given in PDB file
	Function      :
	Example	      : $cmpd = $dssp_obj->pdbCompound();
	Returns	      : scalar string
	Args	      : none

   pdbDate
	Title	      : pdbDate
	Usage	      : returns date given in PDB file
	Function      :
	Example	      : $pdb_date = $dssp_obj->pdbDate();
	Returns	      : scalar
	Args	      : none

   pdbHeader
	Title	      : pdbHeader
	Usage	      : returns header info from PDB file
	Function      :
	Example	      : $header = $dssp_obj->pdbHeader();
	Returns	      : scalar
	Args	      : none

   pdbSource
	Title	      : pdbSource
	Usage	      : returns pdbSource information from PDBSOURCE line
	Function      :
	Example	      : $pdbSource = $dssp_obj->pdbSource();
	Returns	      : scalar
	Args	      : none

   resAA
	Title	      : resAA
	Usage	      : fetches the 1 char amino acid code, given an id
	Function      :
	Example	      : $aa = $dssp_obj->resAA( '20:A' ); # pdb id as arg
	Returns	      : 1 character scalar string
	Args	      : RESIDUE_ID

   resPhi
	Title	      : resPhi
	Usage	      : returns phi angle of a single residue
	Function      : accessor
	Example	      : $phi = $dssp_obj->resPhi( RESIDUE_ID )
	Returns	      : scalar
	Args	      : RESIDUE_ID

   resPsi
	Title	      : resPsi
	Usage	      : returns psi angle of a single residue
	Function      : accessor
	Example	      : $psi = $dssp_obj->resPsi( RESIDUE_ID )
	Returns	      : scalar
	Args	      : RESIDUE_ID

   resSolvAcc
	Title	      : resSolvAcc
	Usage	      : returns solvent exposed area of this residue in
			square Angstroms
	Function      :
	Example	      : $solv_acc = $dssp_obj->resSolvAcc( RESIDUE_ID );
	Returns	      : scalar
	Args	      : RESIDUE_ID

   resSurfArea
	Title	      : resSurfArea
	Usage	      : returns solvent exposed area of this residue in
			square Angstroms
	Function      :
	Example	      : $solv_acc = $dssp_obj->resSurfArea( RESIDUE_ID );
	Returns	      : scalar
	Args	      : RESIDUE_ID

   resSecStr
	Title	      : resSecStr
	Usage	      : $ss = $dssp_obj->resSecStr( RESIDUE_ID );
	Function      : returns the DSSP secondary structural designation of this residue
	Example	      :
	Returns	      : a character ( 'B', 'E', 'G', 'H', 'I', 'S', 'T', or ' ' )
	Args	      : RESIDUE_ID
	NOTE	      : The range of this method differs from that of the
	   resSecStr method in the STRIDE SecStr parser.  That is because of the
	   slightly different format for STRIDE and DSSP output.  The resSecStrSum
	   method exists to map these different ranges onto an identical range.

   resSecStrSum
	Title	      : resSecStrSum
	Usage	      : $ss = $dssp_obj->resSecStrSum( $id );
	Function      : returns what secondary structure group this residue belongs
			to.  One of:  'H': helix ( H, G, or I )
				      'B': beta	 ( B or E )
				      'T': turn	 ( T or S )
				      ' ': none	 ( ' ' )
			This method is similar to resSecStr, but the information
			it returns is less specific.
	Example	      :
	Returns	      : a character ( 'H', 'B', 'T', or ' ' )
	Args	      : dssp residue number of pdb residue identifier

   hBonds
	Title	      : hBonds
	Usage	      : returns number of 14 different types of H Bonds
	Function      :
	Example	      : $hb = $dssp_obj->hBonds
	Returns	      : pointer to 14 element array of ints
	Args	      : none
	NOTE	      : The different type of H-Bonds reported are, in order:
	   TYPE O(I)-->H-N(J)
	   IN PARALLEL BRIDGES
	   IN ANTIPARALLEL BRIDGES
	   TYPE O(I)-->H-N(I-5)
	   TYPE O(I)-->H-N(I-4)
	   TYPE O(I)-->H-N(I-3)
	   TYPE O(I)-->H-N(I-2)
	   TYPE O(I)-->H-N(I-1)
	   TYPE O(I)-->H-N(I+0)
	   TYPE O(I)-->H-N(I+1)
	   TYPE O(I)-->H-N(I+2)
	   TYPE O(I)-->H-N(I+3)
	   TYPE O(I)-->H-N(I+4)
	   TYPE O(I)-->H-N(I+5)

   numSSBr
	Title	      : numSSBr
	Usage	      : returns info about number of SS-bridges
	Function      :
	Example	      : @SS_br = $dssp_obj->numSSbr();
	Returns	      : 3 element scalar int array
	Args	      : none

   resHB_O_HN
	Title	      : resHB_O_HN
	Usage	      : returns pointer to a 4 element array
			consisting of: relative position of binding
			partner #1, energy of that bond (kcal/mol),
			relative positionof binding partner #2,
			energy of that bond (kcal/mol).	 If the bond
			is not bifurcated, the second bond is reported
			as 0, 0.0
	Function      : accessor
	Example	      : $oBonds_ptr = $dssp_obj->resHB_O_HN( RESIDUE_ID )
	Returns	      : pointer to 4 element array
	Args	      : RESIDUE_ID

   resHB_NH_O
	Title	      : resHB_NH_O
	Usage	      : returns pointer to a 4 element array
			consisting of: relative position of binding
			partner #1, energy of that bond (kcal/mol),
			relative positionof binding partner #2,
			energy of that bond (kcal/mol).	 If the bond
			is not bifurcated, the second bond is reported
			as 0, 0.0
	Function      : accessor
	Example	      : $nhBonds_ptr = $dssp_obj->resHB_NH_O( RESIDUE_ID )
	Returns	      : pointer to 4 element array
	Args	      : RESIDUE_ID

   resTco
	Title	      : resTco
	Usage	      : returns tco angle around this residue
	Function      : accessor
	Example	      : resTco = $dssp_obj->resTco( RESIDUE_ID )
	Returns	      : scalar
	Args	      : RESIDUE_ID

   resKappa
	Title	      : resKappa
	Usage	      : returns kappa angle around this residue
	Function      : accessor
	Example	      : $kappa = $dssp_obj->resKappa( RESIDUE_ID )
	Returns	      : scalar
	Args	      : RESIDUE_ID ( dssp or PDB )

   resAlpha
	Title	      : resAlpha
	Usage	      : returns alpha angle around this residue
	Function      : accessor
	Example	      : $alpha = $dssp_obj->resAlpha( RESIDUE_ID )
	Returns	      : scalar
	Args	      : RESIDUE_ID ( dssp or PDB )

   secBounds
	Title	      : secBounds
	Usage	      : gets residue ids of boundary residues in each
			contiguous secondary structural element of specified
			chain
	Function      : returns pointer to array of 3 element arrays.  First
			two elements are the PDB IDs of the start and end points,
			respectively and inclusively.  The last element is the
			DSSP secondary structural assignment code,
			i.e. one of : ('B', 'E', 'G', 'H', 'I', 'S', 'T', or ' ')
	Example	      : $ss_elements_pts = $dssp_obj->secBounds( 'A' );
	Returns	      : pointer to array of arrays
	Args	      : chain id ( 'A', for example ).	No arg => no chain id

   chains
	Title	      : chains
	Usage	      : returns pointer to array of chain I.D.s (characters)
	Function      :
	Example	      : $chains_pnt = $dssp_obj->chains();
	Returns	      : array of characters, one of which may be ' '
	Args	      : none

   residues
	   Title : residues
	   Usage : returns array of residue identifiers for all residues in
	   the output file, or in a specific chain
	   Function :
	   Example : @residues_ids = $dssp_obj->residues()
	   Returns : array of residue identifiers
	   Args : if none => returns residue ids of all residues of all
	   chains (in order); if chain id is given, returns just the residue
	   ids of residues in that chain

   getSeq
	Title	      : getSeq
	Usage	      : returns a Bio::PrimarySeq object which represents a good
			guess at the sequence of the given chain
	Function      : For most chains of most entries, the sequence returned by
			this method will be very good.	However, it is inherently
			unsafe to rely on DSSP to extract sequence information about
			a PDB entry.  More reliable information can be obtained from
			the PDB entry itself.
	Example	      : $pso = $dssp_obj->getSeq( 'A' );
	Returns	      : (pointer to) a PrimarySeq object
	Args	      : Chain identifier.  If none given, ' ' is assumed.  If no ' '
			chain, the first chain is used.

INTERNAL METHODS
   _pdbChain
	Title	      : _pdbChain
	Usage	      : returns the pdb chain id of given residue
	Function      :
	Example	      : $chain_id = $dssp_obj->pdbChain( DSSP_KEY );
	Returns	      : scalar
	Args	      : DSSP_KEY ( dssp or pdb )

   _resAA
	Title	      : _resAA
	Usage	      : fetches the 1 char amino acid code, given a dssp id
	Function      :
	Example	      : $aa = $dssp_obj->_resAA( dssp_id );
	Returns	      : 1 character scalar string
	Args	      : dssp_id

   _pdbNum
	Title	     : _pdbNum
	Usage	     : fetches the numeric portion of the identifier for a given
		       residue as reported by the pdb entry.  Note, this DOES NOT
		       uniquely specify a residue.  There may be an insertion code
		       and/or chain identifier differences.
	Function     :
	Example	     : $pdbNum = $self->_pdbNum( DSSP_ID );
	Returns	     : a scalar
	Args	     : DSSP_ID

   _pdbInsCo
	Title	     : _pdbInsCo
	Usage	     : fetches the Insertion Code for this residue, if it has one.
	Function     :
	Example	     : $pdbNum = $self->_pdbInsCo( DSSP_ID );
	Returns	     : a scalar
	Args	     : DSSP_ID

   _toPdbId
	Title	     : _toPdbId
	Usage	     : Takes a dssp key and builds the corresponding
		       PDB identifier string
	Function     :
	Example	     : $pdbId = $self->_toPdbId( DSSP_ID );
	Returns	     : scalar
	Args	     : DSSP_ID

   _contSegs
	Title	      : _contSegs
	Usage	      : find the endpoints of continuous regions of this structure
	Function      : returns pointer to array of 3 element array.
			Elements are the dssp keys of the start and end points of each
			continuous element and its PDB chain id (may be blank).
			Note that it is common to have several
			continuous elements with the same chain id.  This occurs
			when an internal region is disordered and no structural
			information is available.
	Example	      : $cont_seg_ptr = $dssp_obj->_contSegs();
	Returns	      : pointer to array of arrays
	Args	      : none

   _numResLines
	Title	      : _numResLines
	Usage	      : returns the total number of residue lines in this
			dssp file.
			This number is DIFFERENT than the number of residues in
			the pdb file because dssp has chain termination and chain
			discontinuity 'residues'.
	Function      :
	Example	      : $num_res = $dssp_obj->_numResLines();
	Returns	      : scalar int
	Args	      : none

   _toDsspKey
	Title	      : _toDsspKey
	Usage	      : returns the unique dssp integer key given a pdb residue id.
			All accessor methods require (internally)
			the dssp key.	This method is very useful in converting
			pdb keys to dssp keys so the accessors can accept pdb keys
			as argument.  PDB Residue IDs are inherently
			problematic since they have multiple parts of
			overlapping function and ill-defined or observed
			convention in form.  Input can be in any of the formats
			described in the DESCRIPTION section above.
	Function      :
	Example	      : $dssp_id = $dssp_obj->_pdbKeyToDsspKey( '10B:A' )
	Returns	      : scalar int
	Args	      : pdb residue identifier: num[insertion code]:[chain]

   _parse
	Title	      : _parse
	Usage	      : parses dssp output
	Function      :
	Example	      : used by the constructor
	Returns	      :
	Args	      : input source ( handled by Bio::Root:IO )

   _parseResLine
	Title	      : _parseResLine
	Usage	      : parses a single residue line
	Function      :
	Example	      : used internally
	Returns	      :
	Args	      : residue line ( string )

perl v5.14.1			  2011-07-Bio::Structure::SecStr::DSSP::Res(3)
[top]

List of man pages available for Pidora

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net